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Abstract. We study the supersymmetric GUT models in which the supersymmetry and GUT gauge sym-
metry can be broken by a discrete symmetry. First, with the ansatz that there exist discrete symmetries in
the branes’ neighborhoods, we discuss the general reflection Z2 symmetries and GUT breaking on M4×M1

and M4 ×M1 ×M1. In those models, the extra dimensions can be large and the KK states can be set
arbitrarily heavy. Second, considering that the extra space manifold is the annulus A2 or the disc D2, we
can define any Zn symmetry and break any 6-dimensional N = 2 supersymmetric SU(M) models down
to the 4-dimensional N = 1 supersymmetric SU(3) × SU(2) × U(1)M−4 models for the zero modes. In
particular, there might exist the interesting scenario on M4×A2 where just a few KK states are light, while
the others are relatively heavy. Third, we discuss the complete global discrete symmetries on M4×T 2 and
study the GUT breaking.

1 Introduction

Grand unified theory (GUT) gives us a simple and ele-
gant understanding of the quantum numbers of the quarks
and leptons, and the success of gauge coupling unification
in the minimal supersymmetric standard model strongly
supports this idea. The grand unified theory at a high en-
ergy scale has been widely accepted now, but there are
some problems in GUT: the grand unified gauge sym-
metry breaking mechanism, the doublet–triplet splitting
problem, the proton decay, etc.

As we know, one obvious approach to break GUT gauge
symmetry is the Higgs mechanism [1], which is discussed
extensively in phenomenology. Another approach is the
one of spin connection embedding, which is used in the
weakly coupled heterotic string E8 ×E8, and M-theory on
S1/Z2 [2]. Because the Calabi–Yau manifold has SU(3)
holonomy, the observable E8 gauge group can be broken
down to E6 by spin connection embedding. In addition,
the GUT gauge symmetry can be broken down to a low
energy subgroup by means of Wilson lines, provided that
the fundamental group of the extra space manifold or orb-
ifold is non-trivial [3].

Recently, a new scenario to explain the above questions
in GUT has been suggested by Kawamura [4–6], and fur-
ther discussed in a lot of papers [7,8]. The key point is that
the GUT gauge symmetry exists in 5 or higher dimensions
and is broken down to the 4-dimensional N = 1 super-
symmetric standard model like gauge symmetry for the
zero modes due to the discrete symmetries in the branes’
neighborhoods, which become the non-trivial orbifold pro-
jections on the multiplets and gauge generators in GUT.
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Therefore, we would like to call this the discrete symme-
try approach. Attractive models have been constructed
explicitly where the supersymmetric 5-dimensional and
6-dimensional GUT models are broken down to the 4-
dimensional N = 1 supersymmetric SU(3) × SU(2) ×
U(1)n−3 model, where n is the rank of the GUT group,
through the compactification on various orbifolds. The
GUT gauge symmetry breaking and doublet–triplet split-
ting problems have been solved neatly by the orbifold pro-
jections, and other interesting phenomenology issues, like
µ problems, gauge coupling unifications, non-supersym-
metric GUT, gauge–Higgs unification, proton decay, etc.,
have also been discussed [7,8]. By the way, it seems to us
that this approach is similar to the Wilson line approach,
but it is not the same; for example, the fundamental group
of the extra space manifold can be trivial in the discrete
symmetry approach, and we may not break the supersym-
metry by a Wilson line approach.

On the other hand, large extra dimension scenarios
with branes have been a very interesting subject for the
past few years; in those models the gauge hierarchy prob-
lem can be solved because the physical volume of extra
dimensions may be very large and the higher dimensional
Planck scale might be low [9], or the metric for the ex-
tra dimensions has a warp factor [10]. Naively, one might
think the masses of the KK states are (

∑
i n

2
i /R

2
i )

1/2,
where Ri is the radius of the ith extra dimension. How-
ever, it is shown that this is not true if one considers the
shape moduli [11] or the local discrete symmetry in the
brane neighborhood [12], and it may be possible to main-
tain the ratio (hierarchy) between the higher dimensional
Planck scale and 4-dimensional Planck scale while simul-
taneously making the KK states arbitrarily heavy. So a lot
of experimental bounds on the theories with large extra
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dimensions are relaxed. Moreover, the gauge symmetry
and supersymmetry can be broken if we consider the local
discrete symmetry [12].

In this paper, we study the supersymmetric GUT mod-
els where the supersymmetry and GUT gauge symmetry
can be broken by the discrete symmetries in the branes’
neighborhoods or on the extra space manifold. We require
that for the zero modes in the bulk, the supersymmetric
GUT models are broken down to the 4-dimensional N = 1
supersymmetric SU(3) × SU(2) × U(1)n−3 model, and
above the GUT scale or including the zero modes and KK
modes, the bulk should preserve the original GUT gauge
symmetry and supersymmetries, i.e., we cannot project
out all the zero modes and KK modes of the fields in the
theories. In addition, we define two discrete symmetries
Zn and Z ′

n to be equivalent if
(1) n = n′;
(2) in order to satisfy our requirement, the representation
for the generator of Zn in the adjoint representation of the
GUT group G must be the same as that for the generator
of Z ′

n.
First, we would like to explore the general scenarios

in which the GUT gauge symmetry and supersymmetry
can be broken by the discrete symmetries in the brane
neighborhood, and the masses of the KK states can be set
arbitrarily heavy. Our ansatz is that there exist discrete
symmetries (local or global) in the special branes’ neigh-
borhoods, which become the additional constraints on the
KK states. The KK states which satisfy the discrete sym-
metries remain in the theories, while the KK states which
do not satisfy the discrete symmetries are projected out.
Therefore, we can construct the theories with only zero
modes for all the KK modes having been projected out,
or the theories which have large extra dimensions and ar-
bitrarily heavy KK modes, because there is no simple rela-
tion between the mass scales of the extra dimensions and
the masses of the KK states. In addition, the bulk gauge
symmetry and supersymmetry can be broken on the spe-
cial branes for the zero and KK modes, and in the bulk for
the zero modes by local and global discrete symmetries.

(I) We generalize our previous models [12] to the models
on the space-time M4 × S1 and M4 × I1, where the M4

is the 4-dimensional Minkowski space-time. We point out
that the general models on M4 × I1 can be obtained from
the general models on M4 × S1 by moduloing the (Z2)k0

symmetry in which k0 is a positive integer. Moreover, we
find that, to satisfy our ansatz and requirement, there
are at most two non-equivalent Z2 symmetries, which can
be local or global. Therefore, we can only discuss the
5-dimensional N = 1 supersymmetric SU(5) model. In
this scenario, the bulk 4-dimensional N = 2 supersym-
metry and SU(5) gauge symmetry are broken down to
the 4-dimensional N = 1 supersymmetry and SU(3) ×
SU(2) × U(1) gauge symmetry on the special brane with
GUT breaking Z2 symmetry for all the modes, and in
the bulk for the zero modes. The 3-branes preserve half
of the bulk supersymmetry. Moreover, the masses of the
KK states can be set arbitrarily heavy although the phys-
ical size of the fifth dimension can be large, even in the

millimeter range. By the way, one can also discuss the
non-supersymmetric SU(6) and SO(10) breaking; how-
ever, there are zero modes for Aâ5 where â is the index
related to the broken gauge generators under two non-
equivalent Z2 projections.

(II) We study the models on the space-timeM4×M1×M1

where M1 can be S1, S1/Z2, and I1. Because the extra
space manifold is the product of two 1-dimensional man-
ifold and the discussions are similar, as representatives,
we discuss the models on the space-times M4 × S1 × S1

in which there are parallel 4-branes with Z2 symmetry
along the fifth and sixth dimensions, and there are at
most four non-equivalent Z2 symmetries. We also discuss
the models on the space-time M4 ×S1/Z2 ×S1/Z2 where
there are only four 4-branes at the boundaries and some 3-
branes in the bulk, and there are three non-equivalent Z2
symmetries. In those models, the extra dimensions can be
large and the masses of the KK states can be set arbitrar-
ily heavy. The 6-dimensional non-supersymmetric GUT
models and N = 1 supersymmetric GUT models can be
considered as special cases of the N = 2 supersymmetric
GUT models, so we discuss the 6-dimensional N = 2 su-
persymmetric GUT models. Because N = 2 6-dimensional
supersymmetric theory has 16 real supercharges, which
corresponds to N = 4 4-dimensional supersymmetric the-
ory, we cannot have hypermultiplets in the bulk, and we
have to put the standard model fermions on the brane.
As representatives, we discuss the 6-dimensional N = 2
supersymmetric SU(6) and SO(10) models on the space-
time M4 × S1 × S1, and the 6-dimensional N = 2 su-
persymmetric SU(6) models with gauge–Higgs unifica-
tion on the space-time M4 × S1/Z2 × S1/Z2. For the
zero modes, the bulk 4-dimensional N = 4 supersym-
metry and SU(6) or SO(10) gauge symmetry are broken
down to the 4-dimensional N = 1 supersymmetry and
SU(3) × SU(2) × U(1)2 gauge symmetry.

Second, we discuss the models where the extra space
manifold is the disc D2 or the annulus A2. In this kind of
scenarios, we can naturally use complex coordinates and
introduce global Zn symmetry for any positive integer n,
so we can break any SU(M) gauge symmetry for M ≥ 5
down to the SU(3) × SU(2) × U(1)M−4 gauge symme-
try. Similar to the above, we only study the 6-dimensional
N = 2 supersymmetric GUT models with the standard
model fermions on the boundary 4-branes or on the 3-
brane at the origin if the extra space manifold is the disc
D2. There are 4-dimensional N = 1 supersymmetry and
SU(3) × SU(2) × U(1)M−4 gauge symmetry in the bulk
and on the 4-branes for the zero modes, and on the 3-
brane at the origin in the disc D2 scenario. Including all
the KK states, we will have 4-dimensional N = 4 super-
symmetry and SU(M) gauge symmetry in the bulk and on
the 4-branes. By the way, if we put the standard model
fermions on the 3-brane at the origin, the extra dimen-
sions can be large and the gauge hierarchy problem can
be solved, for there does not exist a proton decay problem
at all. As an example, we discuss the 6-dimensional N = 2
supersymmetric SU(6) model onM4×A2 orM4×D2 with
Z9 symmetry. Moreover, if the extra space manifold is the
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annulus A2, for suitable choices of the inner radius and
outer radius we might construct the models where only
a few KK states are light, and the other KK states are
relatively heavy due to the boundary condition on the in-
ner and outer boundaries, so we might produce the light
KK states of gauge fields at future colliders, which is very
interesting in collider physics.

In addition, if the extra space manifold is a sector of
D2 or a segment of A2, we point out that the masses of
the KK states can be set arbitrarily heavy if the range of
the angle is small enough. However, we cannot define the
discrete symmetry Zn for n > 2 on a sector of D2 or a
segment of A2, so it is not interesting for us to discuss the
supersymmetric GUT breaking in this case.

Third, we discuss the complete global discrete symme-
try on the space-time M4×T 2. We prove that the possible
global discrete symmetries on the torus is Z2, Z3, Z4, and
Z6. We also discuss the 6-dimensional N = 2 supersym-
metric SU(5) models on the space-time M4 × T 2 with
Z6 symmetry, where the standard model fermions on the
observable 3-brane at one of the fixed points. There are
4-dimensional N = 1 supersymmetry and standard model
gauge symmetry in the bulk for the zero modes, and on the
3-brane at the Z6 fixed point for all the modes. Including
the KK states, we will have the 4-dimensional N = 4 su-
persymmetry and SU(5) gauge symmetry in the bulk, the
4-dimensional N = 1 supersymmetry and SU(5) gauge
symmetry on the 3-branes at the Z3 fixed points, and
the 4-dimensional N = 4 supersymmetry and SU(3) ×
SU(2) × U(1) gauge symmetry on the 3-branes at the Z2
fixed points. The standard model fermions and Higgs fields
can be on any 3-brane at one of the fixed points. In par-
ticular, if we put the standard model fermions and Higgs
fields on the 3-brane at the Z6 fixed point, the extra di-
mensions can be large and the gauge hierarchy problem
can be solved because there is no proton decay problem
at all.

This paper is organized as follows: in Sect. 2 we dis-
cuss the discrete symmetry in the brane neighborhood in
general. We study the discrete symmetry on the space-
time M4 × M1, M4 × M1 × M1, M4 × A2, M4 × T 2 in
Sects. 3, 5, 7, 9, respectively. Next, we discuss the super-
symmetric GUT breaking on the space-time M4 × M1,
M4 × M1 × M1, M4 × A2, M4 × T 2 in Sects. 4, 6, 8, 10,
respectively. Our discussion and conclusions are given in
Sect. 11.

2 Discrete symmetry
in the brane neighborhood

We assume that in a (4+n)-dimensional space-time man-
ifold M4 ×Mn where M4 is the 4-dimensional Minkowski
space-time and Mn is the manifold for extra space dimen-
sions, there exist some topological defects; we call them
branes for simplicity. The special branes which we are
interested in have co-dimension one or highter. Assum-
ing we have K special branes and using the Ith special
brane as a representative, our ansatz is that in the open

neighborhood M4 × UI (UI ⊂ Mn) of the Ith special
brane, there is a global or local discete symmetry1, which
forms a discrete group ΓI , where I = 1, 2, · · · ,K. The
Lagrangian is invariant under the discrete symmetries. In
addition, we require that above the GUT scale or includ-
ing all the KK states, the bulk should preserve the origi-
nal GUT gauge symmetries and supersymmetries, i.e., we
cannot project out all the KK states of the fields in the
theories, and the supersymmetric GUT models are bro-
ken down to the 4-dimensional N = 1 supersymmetric
SU(3) × SU(2) × U(1)n−3 model in the bulk for the zero
modes.

Assuming that the local coordinates for extra dimen-
sions in the Ith special brane neighborhood are y1

I , y
2
I ,· · ·, ynI , the action of any element γIi ⊂ ΓI on UI can be

expressed as

γIi : (y1
I , y

2
I , · · · , ynI ) ⊂ UI

−→ (γIi y
1
I , γ

I
i y

2
I , · · · , γIi ynI ) ⊂ UI , (1)

where the Ith special brane position is the only fixed
point, line, or hypersurface for the whole group ΓI as long
as the neighborhood is small enough.

The Lagrangian is invariant under the discrete symme-
try in the neighborhood M4 ×UI of the Ith special brane,
i.e., for any element γIi ⊂ ΓI

L(xµ, γIi y
1
I , γ

I
i y

2
I , · · · , γIi ynI ) = L(xµ, y1

I , y
2
I , · · · , ynI ), (2)

where (y1
I , y

2
I , · · · , ynI ) ⊂ UI . So, for a generic bulk multi-

plet Φ which fills a representation of the bulk gauge group
G, we have

Φ(xµ, γIi y
1
I , γ

I
i y

2
I , · · · , γIi ynI )

= ηIΦ(RγI
i
)lΦΦ(xµ, y1

I , y
2
I , · · · , ynI )(R−1

γI
i

)mΦ , (3)

where ηIΦ is an element of the discrete symmetry and can
be determined from the Lagrangian (up to an element in
ΓI for the matter fields), lΦ and mΦ are the non-negative
integers determined by the representation of Φ under the
gauge group G. Moreover, RγI

i
is an element in G, and

RΓI
is a discrete subgroup of G. We will choose RγI

i
as the

matrix representation for γIi in the adjoint representation
of the gauge group G. The consistent condition for RγI

i
is

RγI
i
RγI

j
= RγI

i γ
I
j
, ∀γIi , γIj ⊂ ΓI . (4)

Mathematical speaking, the map R : ΓI −→ RΓI
⊂

G is a homomorphism. Because the special branes are
fixed under the discrete symmetry transformations, the
gauge group on the Ith special brane is the subgroup of G
which commutes with RΓI

, and we denote the subgroup by
G/RΓI

. For the zero modes, the bulk gauge group is bro-
ken down to the subgroup of G which commutes with all

1 Global discrete symmetry is a “special” case of local dis-
crete symmetry. The key difference is that the space-time man-
ifold can modulo the global discrete symmetry and become a
quotient space-time manifold or orbifold
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RΓI
, i.e., RΓ1 , RΓ2 , · · · , RΓK

, and we denote the subgroup
by G/{RΓ1 , RΓ2 , · · · , RΓK

}. In addition, if the theory is
supersymmetric, the special branes will preserve part of
the bulk supersymmetry, and the zero modes in the bulk
also preserve part of the supersymmetry; in other words,
the supersymmetry can be broken on the special branes
for all the modes, and in the bulk for the zero modes.

In addition, we only have the KK states which satisfy
the local and global discrete symmetries in the theories
because the KK modes, which do not satisfy the local
and global discrete symmetries, are projected out under
our ansatz. Therefore, we can construct the theories with
only zero modes because all the KK modes are projected
out, or the theories which have large extra dimensions
and arbitrarily heavy KK states for there is no simple
relation between the mass scales of the extra dimensions
and the masses of the KK states. By the way, we are only
interested in the second kind of scenarios.

3 Discrete symmetry
on the space-time M4 × M1

We would like to generalize our previous models [12] to
the models on the space-time M4 × S1, and M4 × I1. We
find that the general models on M4 × I1 can be obtained
from the general models on M4 × S1 by moduloing the
(Z2)k0 symmetry in which k0 is the positive integer. The
models on M4 ×S1/(Z2 ×Z ′

2) [13] are the special case for
k0 = 2 and no 3-branes in the bulk.

We assume that the corresponding coordinates for the
space-time are xµ (µ = 0, 1, 2, 3), y ≡ x5, the radius for
the circle S1 is R, and the length for the interval I1 is πR.
We also assume that there are some special 3-branes along
the fifth dimension, and there is a Z2 reflection symmetry
in each 3-brane neighborhood.

3.1 Discrete symmetry on M4 × S1

Assuming we have n+1 parallel 3-branes along the S1, and
their fifth coordinates are y0 = 0 < y1 < y2 < · · · < yn <
2πR, we define the local fifth coordinate for the ith brane
y′
i ≡ y − yi, and then, y′

0 ≡ y. In addition, the equiva-
lence class for the reflection Z2 symmetry in the ith brane
beighborhood is y′

i ∼ −y′
i. For that Z2 symmetry, we de-

fine the corresponding Z2 operator Pi for i = 0, 1, 2, · · · , n,
whose eigenvalue is ±1, i.e., for a generic field or function,
we have

Piφ(xµ, y′
i) = ±φ(xµ, y′

i). (5)

By the way, P 2
i = 1, so {1, Pi} forms a Z2 group. If

yi/(2πR) is an irrational number, we will project out all
the KK states, which cannot satisfy our requirement. So,
we assume

yi =
pi
qi

2πR, for i = 1, 2, · · · , n, (6)

where pi and qi are relative prime positive integers.

Let us assume that L is the least common multiple for
all pi + qi, i.e.,

L ≡ [p1 + q1, p2 + q2, · · · , pn + qn]. (7)

By the unique prime factorization theorem, we obtain

L = 2k0sk1
1 sk2

2 · · · skj

j , (8)

where 2 < s1 < s2 < · · · < sj , k0 is a non-negative inte-
ger, si is a prime number and ki is a positive integer for
i = 1, 2, · · · , j. Moreover, we define the effective physical
radius r by

r =




4R/L for k0 ≥ 2,
2R/L for k0 = 1,
R/L for k0 = 0.

(9)

For a generic bulk field φ, we obtain the KK modes ex-
pansions

φ++(xµ, y) =
∞∑
n=0

1√
2δn,0πR

φ
(2n)
++ (xµ) cos

2ny
r

, (10)

φ+−(xµ, y) =
∞∑
n=0

1√
πR

φ
(2n+1)
+− (xµ) cos

(2n+ 1)y
r

, (11)

φ−+(xµ, y) =
∞∑
n=0

1√
πR

φ
(2n+1)
−+ (xµ) sin

(2n+ 1)y
r

, (12)

φ−−(xµ, y) =
∞∑
n=0

1√
πR

φ
(2n+2)
−− (xµ) sin

(2n+ 2)y
r

, (13)

where n is a non-negative integer. The 4-dimensional fields
φ

(2n)
++ , φ(2n+1)

+− , φ(2n+1)
−+ and φ

(2n+2)
−− acquire masses 2n/r,

(2n+1)/r, (2n+1)/r and (2n+2)/r upon the compacti-
fication. Zero modes are contained only in the φ++ fields;
thus, the matter content of massless sector is smaller than
that of the full 5-dimensional multiplet. Moreover, because
0 < r ≤ R, the masses of the KK states (n/r) can be set
arbitrarily heavy if L is large enough, i.e., we choose suit-
able pi and qi for some i; for example, if 1/R is about
TeV, pi = 1013 − 1 and qi = 1013 + 1, we obtain that 1/r
is at least about 1016 GeV, which is the usual GUT scale.
Therefore, there is no simple relation between the physical
size of the fifth dimension and the mass scales of the KK
modes.

For k0 = 0 and k0 = 1, we obtain

Piφ+±(xµ, y) = φ+±(xµ, y), (14)
Piφ−±(xµ, y) = −φ−±(xµ, y), (15)

for all i = 0, 1, 2, · · · , n. So, we only have one non-equiv-
alent Z2 symmetry. For i = 0, we always have the above
equations for P0.

For k0 ≥ 2, if (pi+qi) is a multiple of 2k0 , i.e., 2k0 |(pi+
qi), we obtain

Piφ±+(xµ, y) = φ±+(xµ, y), (16)
Piφ±−(xµ, y) = −φ±−(xµ, y), (17)
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and if (pi+ qi) is not a multiple of 2k0 , i.e., 2k0 � |(pi+ qi),
we obtain

Piφ+±(xµ, y) = φ+±(xµ, y), (18)
Piφ−±(xµ, y) = −φ−±(xµ, y). (19)

So we have two non-equivalent Z2 symmetries.
Because we need a discrete symmetry to break the bulk

gauge symmetry and supersymmetry, we will concentrate
on the scenario with k0 ≥ 2. To be explicit, we would like
to give two examples:
(I) n = 1 and 4|(p1 + q1). In this simple case, we can have
two local Z2 symmetries.
(II) Suppose n = 3, 4|(p1 + q1), p2 = q2 = 1, p3 = q1, and
q3 = p1, we have one global Z2 symmetry and one local
Z2 symmetry. The local Z2 symmetry will become global
if p1 = 1 and q1 = 3. This is the scenario discussed in [12]
where the global Z2 symmetry has been moduloed from
the manifold.

Furthermore, if we require that the models have one
global Z2 symmetry, then modulo this global Z2 symme-
try we obtain the models with discrete symmetry on the
space-timeM4×S1/Z2. The two Z2 symmetries in the two
boundary 3-branes’ neighborhoods are equivalent. Let us
explain this in detail: suppose we have 2n + 2 special 3-
branes. We require that y0 = 0, yn+1 = πR, pi = q2n+2−i
and qi = p2n+2−i, where i = 1, 2, · · · , n; we will then have
one global Z2 symmetry in which the equivalence class is
y ∼ −y. Moduloing this equivalence class, we obtain the
models on M4 × S1/Z2.

In general, if we require that the models have global
(Z2)k0 symmetry for k0 > 1, then modulo the global
(Z2)k0 symmetry, we obtain the models with discrete sym-
metry on the space-times M4 × S1/(Z2)k0 . The two Z2
symmetries in the two boundary 3-branes’ neighborhoods
are not equivalent. As an example, we discuss the models
with k0 = 2. Suppose we have 4n + 4 3-branes, yn+1 =
πR/2, y2n+2 = πR, y3n+3 = 3πR/2. For i = 1, 2, · · · , n, we
have pi = q4n+4−i, qi = p4n+4−i, p2n+2−i = p′

i, q2n+2−i =
q′
i, p2n+2+i = q′

i, q2n+2+i = p′
i, where p′

i and q
′
i are relative

prime positive integer and satisfy the equation

p′
i

q′
i

=
qi − pi

2(pi + qi)
. (20)

If n = 0, we obtain the models on M4 ×S1/(Z2 ×Z ′
2) [13].

3.2 Discrete symmetry on M4 × I1

In this subsection, we would like to consider the discrete
symmetry on the space-time M4 × I1. Assuming that
on two boundary 3-branes, the fields should satisfy the
Dirichlet or Neumann boundary condition, we show that
the general models on the space-time M4 × I1 contain the
models on M4×S1/Z2 and the models on M4×S1/(Z2)k0

for k0 > 1. We assume that we have n + 2 parallel 3-
branes along the I1, and that their fifth coordinates are
y0 = 0 < y1 < y2 < · · · < yn+1 = πR. We define the
local fifth coordinate for the ith brane by y′

i ≡ y−yi. The

equivalent class for the reflection Z2 symmetry in the ith
brane neighborhood is y′

i ∼ −y′
i. Moreover, for that Z2

symmetry, we define the corresponding Z2 operator Pi for
i = 0, 1, 2, · · · , n, whose eigenvalue is ±1; i.e., for a generic
field or function, we have

Piφ(xµ, y′
i) = ±φ(xµ, y′

i). (21)

Because if yi/(πR) is an irrational number we will
project out all the KK states, which cannot satisfy our
requirement. So, we assume

yi =
pi
qi
πR, for i = 1, 2, · · · , n, (22)

where pi and qi are relative prime positive integers.
Assume L is the least common multiple for all pi + qi,

i.e.,

L ≡ [p1 + q1, p2 + q2, · · · , pn + qn]. (23)

By the unique prime factorization theorem, we obtain

L = 2l0sl11 s
l2
2 · · · sljj , (24)

where 2 < s1 < s2 < · · · < sj , l0 is a non-negative integer,
si is a prime number and li is a positive integer for i =
1, 2, · · · , j. For the models on the space-time M4 ×S1/Z2,
we define the effective physical radius r by

r =

{
2R/L for l0 ≥ 1,
R/L for l0 = 0.

(25)

For l0 = 0, we can still define the effective radius by

r =
2R
L
. (26)

This kind of models cannot be obtained from the models in
the last subsection by moduloing one global Z2 symmetry;
however, they can be obtained from the models in the last
subesection by moduloing global (Z2)k0 symmetries for
k0 > 1.

For a generic bulk field φ, we obtain the KK modes
expansions

φ++(xµ, y) =
∞∑
n=0

1√
2δn,0πR

φ
(2n)
++ (xµ) cos

2ny
r

, (27)

φ+−(xµ, y) =
∞∑
n=0

1√
πR

φ
(2n+1)
+− (xµ) cos

(2n+ 1)y
r

, (28)

φ−+(xµ, y) =
∞∑
n=0

1√
πR

φ
(2n+1)
−+ (xµ) sin

(2n+ 1)y
r

, (29)

φ−−(xµ, y) =
∞∑
n=0

1√
πR

φ
(2n+2)
−− (xµ) sin

(2n+ 2)y
r

, (30)

where n is a non-negative integer. The 4-dimensional fields
φ

(2n)
++ , φ(2n+1)

+− , φ(2n+1)
−+ and φ

(2n+2)
−− acquire masses 2n/r,

(2n+ 1)/r, (2n+ 1)/r and (2n+ 2)/r upon the compact-
ification. The zero modes are contained only in the φ++
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fields. Moreover, because 0 < r ≤ R, the masses of the
KK states (n/r) can be set arbitrarily heavy if L is large
enough, i.e., we choose suitable pi and qi, for some i. So
there is no simple relation between the physical size of the
fifth dimension and the mass scales of KK states.
(I) First, we discuss the models on the space-times M4 ×
S1/Z2. We should keep in mind that there is one global
Z2 symmetry that has been moduloed from S1, and which
we can call P0 or Pn+1.

For l0 = 0, we obtain

Piφ+±(xµ, y) = φ+±(xµ, y), (31)
Piφ−±(xµ, y) = −φ−±(xµ, y), (32)

for all i = 1, 2, · · · , n. Under our assumption, these Z2
symmetries are equivalent to the global Z2 symmetry, so
we just have one independent Z2 symmetry.

For l0 ≥ 1, if (pi+ qi) is a multiple of 2l0 , i.e., 2l0 |(pi+
qi), we obtain

Piφ±+(xµ, y) = φ±+(xµ, y), (33)
Piφ±−(xµ, y) = −φ±−(xµ, y); (34)

this Z2 symmetry is not equivalent to the global symme-
try. If (pi + qi) is not a multiple of 2l0 , i.e., 2l0 � |(pi + qi),
we obtain

Piφ+±(xµ, y) = φ+±(xµ, y), (35)
Piφ−±(xµ, y) = −φ−±(xµ, y), (36)

this Z2 symmetry is equivalent to the global Z2 symme-
try. In short, we have two independent Z2 symmetries, in
which one can be considered as a global Z2 symmetry.

Because we need a discrete symmetry to break the bulk
gauge symmetry and supersymmetry, we will concentrate
on the scenario with l0 ≥ 1. To be explicit, we would like
to give one example: n = 1 and 2|(p1 + q1). In this simple
case, we can have one local Z2 symmetries and one global
Z2 symmetry. That local Z2 symmetry becomes global if
p1 = q1 = 1.
(II) If l0 = 0 and r = 2R/L, this kind of models can
be obtained from the models in the last subsection by
moduloing the global (Z2)k0 symmetries for k0 > 1, so,
P0 and Pn+1 are two non-equivalent Z2 symmetries. If at
the starting point, the original extra space manifold is I1,
we can consider that there are no global Z2 symmetries
for P0 and Pn+1.

Because l0 = 0, there are two cases: pi is odd and qi is
even, or pi is even and qi is odd. If pi is even,

Piφ+±(xµ, y) = φ+±(xµ, y), (37)
Piφ−±(xµ, y) = −φ−±(xµ, y), (38)

and if pi is odd

Piφ±+(xµ, y) = φ±+(xµ, y), (39)
Piφ±−(xµ, y) = −φ±−(xµ, y). (40)

Therefore, we can have two local Z2 symmetries, which
can be thought of as global symmetries if we consider the
original manifold for the extra dimension to be S1.

4 GUT breaking on the space-time M4 × M1

In this section, we would like to discuss the supersymmet-
ric SU(5) model on the space-time M4 × M1 with two
discrete Z2 symmetries. We assume that there are SU(5)
gauge fields and two 5-plet Higgs hypermultiplets in the
bulk, and the standard model fermions can be on the 3-
brane or in the bulk.

As we know, the N = 1 supersymmetric theory in
5-dimension have 8 real supercharges, corresponding to
N = 2 supersymmetry in 4-dimension. The vector multi-
plet physically contains a vector boson AM where M =
0, 1, 2, 3, 5, two Weyl gauginos λ1,2, and a real scalar σ.
In terms of 4-dimensional N = 1 language, it contains a
vector multiplet V (Aµ, λ1) and a chiral multiplet Σ((σ +
iA5)/21/2, λ2) which transform in the adjoint represen-
tation of SU(5). And the 5-dimensional hypermultiplet
physically has two complex scalars φ and φc, a Dirac
fermion Ψ , and can be decomposed into two 4-dimensional
chiral multiplets Φ(φ, ψ ≡ ΨR) and Φc(φc, ψc ≡ ΨL), which
transform as conjugate representations of each other under
the gauge group. For instance, we have two Higgs chiral
multiplets Hu and Hd, which transform as 5 and 5̄ un-
der the SU(5) gauge symmetry, and their mirror Hc

u and
Hc
d, which transform as 5̄ and 5 under the SU(5) gauge

symmetry.
The general action for the SU(5) gauge fields and their

couplings to the bulk hypermultiplet Φ is [14]

S =
∫

d5x
1
kg2Tr

[
1
4

∫
d2θ (WαWα + H.C.)

+
∫

d4θ
(
(
√
2∂5 + Σ̄)e−V (−

√
2∂5 +Σ)eV

+ ∂5e−V ∂5eV
)]

+
∫

d5x

[∫
d4θ

(
ΦceV Φ̄c + Φ̄e−V Φ

)
+

∫
d2θ

(
Φc

(
∂5 − 1√

2
Σ

)
Φ+ H.C.

)]
. (41)

Because the action is invariant under the parity Pi, we
find that under the parity operator Pi the vector multiplet
transforms as

V (xµ, y′
i) → V (xµ,−y′

i) = PiV (xµ, y′
i)P

−1
i , (42)

Σ(xµ, y′
i) → Σ(xµ,−y′

i) = −PiΣ(xµ, y′
i)P

−1
i ; (43)

if the hypermultiplet Φ is a 5 or 5̄ SU(5) multiplet, we
have

Φ(xµ, y′
i) → Φ(xµ,−y′

i) = ηΦPiΦ(xµ, y′
i), (44)

Φc(xµ, y′
i) → Φc(xµ,−y′

i) = −ηΦPiΦc(xµ, y′
i), (45)

and if the hypermultiplet Φ is a 10 or 1̄0 SU(5) multiplet,
we have

Φ(xµ, y′
i) → Φ(xµ,−y′

i) = ηΦPiΦ(xµ, y′
i)P

−1
i , (46)

Φc(xµ, y′
i) → Φc(xµ,−y′

i) = −ηΦPiΦc(xµ, y′
i)P

−1
i , (47)
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Table 1. Parity assignment and masses (n ≥ 0) of the fields
in the SU(5) gauge and Higgs multiplets. The indices F , T are
for doublet and triplet, respectively

(P, P ′) Field Mass

(+,+) V a
µ , HF

u , HF
d

2n
r

(+,−) V â
µ , HT

u , HT
d

2n+1
r

(−,+) Σâ, HcT
u , HcT

d
2n+1

r

(−,−) Σa, HcF
u , HcF

d
2n+2

r

where ηΦ = ±1.
For simplicity, let us denote the two non-equivalent Z2

symmetries by P and P ′. We choose the following ma-
trix representations for the parities P and P ′ which are
expressed in the adjoint representaion of SU(5)

P = diag(+1,+1,+1,+1,+1),
P ′ = diag(−1,−1,−1,+1,+1). (48)

So, upon using the parity P ′, the gauge generators TA

where A = 1, 2, · · · , 24 for SU(5) are separated into two
sets: T a are the gauge generators for the standard model
gauge group, and T â are the other broken gauge genera-
tors

PT aP−1 = T a, PT âP−1 = T â, (49)

P ′ T aP
′−1 = T a, P ′ T âP

′−1 = −T â. (50)

Choosing ηHu = +1 and ηHd
= +1, we obtain the

particle spectra, which are given in Table 1. The bulk 4-
dimensional N = 2 supersymmetry and SU(5) gauge sym-
metry are broken down to the 4-dimensional N = 1 super-
symmetry and SU(3)×SU(2)×U(1) gauge symmetry in
the bulk for the zero modes, and on the special 3-branes
which preserve Z2 symmetry P ′ for all the modes. Includ-
ing the KK states, the gauge symmetry on the special
3-branes which preserve the Z2 symmetry P , is SU(5).
In addition, the 4-dimensional supersymmetry on the 3-
branes is 1/2 of the bulk 4-dimensional supersymmetry or
N = 1 due to the Z2 symmetry in the brane neighbor-
hood. Moreover, the standard model fermions can be in
the bulk or on the 3-brane, and the discussions are similar
to those in [4–8], so we will not repeat them here.

By the way, one can also discuss the non-supersymmet-
ric SU(6) and SO(10) breaking; however, there are zero
modes for Aâ5 where â is the index related to the broken
gauge generators under two Z2 symmetries.

5 Discrete symmetry
on the space-time M4 × M1 × M1

We would like to discuss the models where there are some
parallel 4-branes with Z2 reflection symmetry along the
fifth and sixth dimensions on the space-time M4 ×M1 ×
M1, in which M1 can be S1, S1/Z2, and I1. Because the
extra space manifold is the product of two 1-dimensional
manifolds, we only discuss the models on the space-times

M4 × S1 × S1 as a representative because the discus-
sions of the models with other combinations are simi-
lar. In addition, we discuss the models on the space-time
M4 × S1/Z2 × S1/Z2 where there are some 3-branes with
Z2 symmetry in the bulk.

The corresponding coordinates for the space-time are
xµ, (µ = 0, 1, 2, 3) y ≡ x5, z ≡ x6, and the radii for the y
and z directions are R1 and R2, respectively.

5.1 Discrete symmetry on M4 × S1 × S1

First, we would like to discuss the discrete symmetry on
the space-time M4 × S1 × S1. Assume that along the y
and z directions, we have n + 1 and m + 1 parallel 4-
branes with Z2 reflection symmetry, respectively. The 5th
coordinates for the parallel 4-branes along the y direction
are y0 = 0 < y1 < y2 < · · · < yn < 2πR1, and the 6th
coordinates for the parallel 4-branes along the z direction
are z0 = 0 < z1 < z2 < · · · < zm < 2πR2.

We denote the local coordinate for the ith 4-brane
along the y direction by y′

i ≡ y − yi. In addition, for the
Z2 symmetry in the ith 4-brane neighborhood, we define
a Z2 operator P y

i for i = 0, 1, 2, · · · , n, whose eigenvalue is
±1, i.e., for a generic field or function, we have

P y
i φ(x

µ, y′
i, z) = ±φ(xµ, y′

i, z). (51)

Similarly, we denote the local coordinate for the ith
4-brane along the z direction by z′

i ≡ z − zi. For the Z2
symmetry in the ith 4-brane neighborhood, we define a
Z2 operator P z

i for i = 0, 1, 2, · · · ,m:

P z
i φ(x

µ, y, z′
i) = ±φ(xµ, y, z′

i). (52)

Because if yi/(2πR1) or zi/(2πR1) is an irrational num-
ber, we will project out all the KK states, which cannot
satisfy our requirement. So we assume

yi =
pyi
qyi

2πR1, for i = 1, 2, · · · , n, (53)

zi =
pzi
qzi

2πR2, for i = 1, 2, · · · ,m, (54)

where pyi and qyi are relative prime positive integers, and
pzi and qzi are relative prime positive integers.

Let us assume that Ly is the least common multiple
for all pyi + qyi , and Lz is the least common multiple for all
pzi + qzi , i.e.,

Ly ≡ [py1 + qy1 , p
y
2 + qy2 , · · · , pyn + qyn], (55)

Lz ≡ [pz1 + qz1 , p
z
2 + qz2 , · · · , pzm + qzm]. (56)

By the unique prime factorization theorem, we find
that

Ly = 2k0sk1
1 sk2

2 · · · sku
u , (57)

Lz = 2l0tl11 t
l2
2 · · · tlvv , (58)

where 2 < s1 < s2 < · · · < su, 2 < t1 < t2 < · · · < tv, k0
and l0 are non-negative integers, si and tj are prime num-
bers, and ki and lj are positive integers for i = 1, 2, · · · , u
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and j = 1, 2, · · · , v. We define the effective physical radii
r1 and r2 by

r1 =




4R1/Ly for k0 ≥ 2,
2R1/Ly for k0 = 1,
R1/Ly for k0 = 0,

(59)

r2 =




4R1/Lz for l0 ≥ 2,
2R1/Lz for l0 = 1,
R1/Lz for l0 = 0.

(60)

For a generic bulk field φ, we obtain the KK modes
expansions

φ++++(xµ, y, z) (61)

=
∞∑
n=0

∞∑
m=0

φ
(2n,2m)
++++ (xµ)A2n

++(y, r1)A2m
++(z, r2),

φ+++−(xµ, y, z) (62)

=
∞∑
n=0

∞∑
m=0

φ
(2n,2m+1)
+++− (xµ)A2n

++(y, r1)A2m+1
+− (z, r2),

φ++−+(xµ, y, z) (63)

=
∞∑
n=0

∞∑
m=0

φ
(2n,2m+1)
++−+ (xµ)A2n

++(y, r1)A2m+1
−+ (z, r2),

φ++−−(xµ, y, z) (64)

=
∞∑
n=0

∞∑
m=0

φ
(2n,2m+2)
++−− (xµ)A2n

++(y, r1)A2m+2
−− (z, r2),

φ+−++(xµ, y, z) (65)

=
∞∑
n=0

∞∑
m=0

φ
(2n+1,2m)
+−++ (xµ)A2n+1

+− (y, r1)A2m
++(z, r2),

φ+−+−(xµ, y, z) (66)

=
∞∑
n=0

∞∑
m=0

φ
(2n+1,2m+1)
+−+− (xµ)A2n+1

+− (y, r1)A2m+1
+− (z, r2),

φ+−−+(xµ, y, z) (67)

=
∞∑
n=0

∞∑
m=0

φ
(2n+1,2m+1)
+−−+ (xµ)A2n+1

+− (y, r1)A2m+1
−+ (z, r2),

φ+−−−(xµ, y, z) (68)

=
∞∑
n=0

∞∑
m=0

φ
(2n+1,2m+2)
+−−− (xµ)A2n+1

+− (y, r1)A2m+2
−− (z, r2),

φ−+++(xµ, y, z) (69)

=
∞∑
n=0

∞∑
m=0

φ
(2n+1,2m)
−+++ (xµ)A2n+1

−+ (y, r1)A2m
++(z, r2),

φ−++−(xµ, y, z) (70)

=
∞∑
n=0

∞∑
m=0

φ
(2n+1,2m+1)
−++− (xµ)A2n+1

−+ (y, r1)A2m+1
+− (z, r2),

φ−+−+(xµ, y, z) (71)

=
∞∑
n=0

∞∑
m=0

φ
(2n+1,2m+1)
−+−+ (xµ)A2n+1

−+ (y, r1)A2m+1
−+ (z, r2),

φ−+−−(xµ, y, z) (72)

=
∞∑
n=0

∞∑
m=0

φ
(2n+1,2m+2)
−+−− (xµ)A2n+1

−+ (y, r1)A2m+2
−− (z, r2),

φ−−++(xµ, y, z) (73)

=
∞∑
n=0

∞∑
m=0

φ
(2n+2,2m)
−−++ (xµ)A2n+2

−− (y, r1)A2m
++(z, r2),

φ−−+−(xµ, y, z) (74)

=
∞∑
n=0

∞∑
m=0

φ
(2n+2,2m+1)
−−+− (xµ)A2n+2

−− (y, r1)A2m+1
+− (z, r2),

φ−−−+(xµ, y, z) (75)

=
∞∑
n=0

∞∑
m=0

φ
(2n+2,2m+1)
−−−+ (xµ)A2n+2

−− (y, r1)A2m+1
−+ (z, r2),

φ−−−−(xµ, y, z) (76)

=
∞∑
n=0

∞∑
m=0

φ
(2n+2,2m+2)
−−−− (xµ)A2n+2

−− (y, r1)A2m+2
−− (z, r2),

where

A2n
++(y, r1) =

1√
2δn,0πR1

cos
2ny
r1

, (77)

A2n+1
+− (y, r1) =

1√
πR1

cos
(2n+ 1)y

r1
, (78)

A2n+1
−+ (y, r1) =

1√
πR1

sin
(2n+ 1)y

r1
, (79)

A2n+2
−− (y, r1) =

1√
πR1

sin
(2n+ 2)y

r1
. (80)

Similarly, we define A2n
++(z, r2), A2n+1

+− (z, r2), A2n+1
−+ (z,

r2), A2n+2
−− (z, r2).

The 4-dimensional fields φ(n,m) acquire masses (n2/
r21+m2/r22)

1/2 upon the compactification. The zero modes
are contained only in the φ++++ fields. Moreover, because
0 < r1 ≤ R1 and 0 < r2 ≤ R2, the masses of the KK states
((n2/r21 + m2/r22)

1/2) can be set arbitrarily heavy if Ly
and Lz are large enough, i.e., we choose suitable (pyi , q

y
i )

for some i, and (pzj , q
z
j ) for some j. So there is no simple

relation between the physical size of the extra dimensions
and the mass scales of KK modes.

For k0 = 0 and k0 = 1, we obtain

P y
i φ+±±±(xµ, y, z) = φ+±±±(xµ, y, z), (81)

P y
i φ−±±±(xµ, y, z) = −φ−±±±(xµ, y, z), (82)

for all i = 0, 1, 2, · · · , n. So we only have one independent
Z2 symmetry. For i = 0, we always have the above equa-
tions for P y

0 .
Moreover, for k0 ≥ 2, if (pyi + qyi ) is a multiple of 2k0 ,

i.e., 2k0 |(pyi + qyi ), we obtain

P y
i φ±+±±(xµ, y, z) = φ±+±±(xµ, y, z), (83)

P y
i φ±−±±(xµ, y, z) = −φ±−±±(xµ, y, z), (84)
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and if (pyi +qyi ) is not a multiple of 2k0 , i.e., 2k0 � |(pyi +qyi ),
we obtain

P y
i φ+±±±(xµ, y, z) = φ+±±±(xµ, y, z), (85)

P y
i φ−±±±(xµ, y, z) = −φ−±±±(xµ, y, z). (86)

So we have two non-equivalent Z2 symmetries along the y
direction.

Similarly, for l0 = 0 and l0 = 1, we obtain

P z
i φ±±+±(xµ, y, z) = φ±±+±(xµ, y, z), (87)

P z
i φ±±−±(xµ, y, z) = −φ±±−±(xµ, y, z), (88)

for all i = 0, 1, 2, · · · ,m. So we only have one indepen-
dent Z2 symmetry. For i = 0, we always have the above
equations for P z

0 .
For l0 ≥ 2, if (pzi +qzi ) is a multiple of 2l0 , i.e., 2l0 |(pzi +

qzi ), we obtain

P z
i φ±±±+(xµ, y, z) = φ±±±+(xµ, y, z), (89)

P z
i φ±±±−(xµ, y, z) = −φ±±±−(xµ, y, z), (90)

and if (pzi + qzi ) is not a multiple of 2l0 , i.e., 2l0 � |(pzi + qzi )
we obtain

P z
i φ±±+±(xµ, y, z) = φ±±+±(xµ, y, z), (91)

P z
i φ±±−±(xµ, y, z) = −φ±±−±(xµ, y, z). (92)

So we have two non-equivalent Z2 symmetries along the z
direction.

Therefore, we can have at most four non-equivalent
Z2 symmetries. Because we need a discrete symmetry to
break the bulk gauge symmetry and supersymmetry, we
will concentrate on the scenario with k0 ≥ 2 and l0 ≥ 2.
To be explicit, we would like to give two examples.
(I) n = 1, m = 1, 4|(py1 + qy1 ), 4|(pz1 + qz1). In this simple
case, we can have four local Z2 symmetries.
(II) Suppose n = 3, m = 3, 4|(py1 + qy1 ), 4|(pz1 + qz1), p

y
2 =

qy2 = 1, pz2 = qz2 = 1, py3 = qy1 , q
y
3 = py1, p

z
3 = qz1 , and qz3 =

pz1. Now we will have two global Z2 symmetries and two
local Z2 symmetries. The local Z2 symmetry will become
global if py1 = 1 and qy1 = 3, or pz1 = 1 and qz1 = 3.
The two global Z2 symmetries can be moduloed from the
manifold. In general, we may have global (Z2)k0 and (Z2)l0
symmetries; the extra space orbifold will be S1/(Z2)k0 ×
S1/(Z2)l0 if we modulo those global Z2 symmetries.

5.2 Discrete symmetry on M4 × S1/Z2 × S1/Z2

In this subsection, we would like to discuss the discrete
symmetry on the space-time M4 × S1/Z2 × S1/Z2, where
there are some 3-branes with Z2 symmetry in the bulk.
And we denote two global Z2 symmtries y ∼ −y and z ∼
−z as P y and P z. For simplicity, we assume that there
are only four 4-branes which are the boundary branes on
S1/Z2 × S1/Z2, and the 3-branes are only in the bulk.

Suppose we have n 3-branes in the bulk, and their
coodinates are (yi, zi) where 0 < yi < πR1 and 0 < zi <

πR2. We denote the local coordinates for the ith 3-brane
by y′

i ≡ y − yi, and z′
i ≡ z − zi. Then the equivalent class

for the reflection Z2 symmetry in the ith 3-brane neigh-
borhood is (y′

i, z
′
i) ∼ (−y′

i,−z′
i). For that Z2 symmetry, we

define the corresponding Z2 operator Pi for i = 1, 2, · · · , n,
whose eigenvalue is ±1, i.e., for a generic field or function;
we have

Piφ(xµ,−y′
i,−z′

i) = ±φ(xµ, y′
i, z

′
i). (93)

Because if yi/(2πR1) or zi/(2πR1) is an irrational num-
ber, we will project out all the KK states, which cannot
satisfy our requirement. So we assume

yi =
pyi
qyi
πR1, for i = 1, 2, · · · , n, (94)

zi =
pzi
qzi
πR2, for i = 1, 2, · · · ,m, (95)

where pyi and qyi are relative prime positive integers, and
pzi and qzi are relative prime positive integers.

Assume Ly is the least common multiple for all pyi +qyi ,
and Lz is the least common multiple for all pzi + qzi , i.e.,

Ly ≡ [py1 + qy1 , p
y
2 + qy2 , · · · , pyn + qyn], (96)

Lz ≡ [pz1 + qz1 , p
z
2 + qz2 , · · · , pzm + qzm]. (97)

By the unique prime factorization theorem, we obtain

Ly = 2k0sk1
1 sk2

2 · · · sku
u , (98)

Lz = 2l0tl11 t
l2
2 · · · tlvv , (99)

where 2 < s1 < s2 < · · · < su, 2 < t1 < t2 < · · · < tv, k0
and l0 are non-negative integers, si and tj are prime num-
bers, and ki and lj are positive integers for i = 1, 2, · · · , u
and j = 1, 2, · · · , v. We define the effective physical radii
r1 and r2 by

r1 =

{
2R1/Ly for k0 ≥ 1,
R1/Ly for k0 = 0,

(100)

r2 =

{
2R2/Lz for l0 ≥ 1,
R2/Lz for l0 = 0.

(101)

Because we require that all fields have zero modes or
KK modes, we can only have one additional non-equivalent
Z2 symmetry for all the 3-branes, which is not equivalent
to two global Z2 symmetries P y and P z. In this scenario,
k0 ≥ 1, l0 ≥ 1; 2k0 |(pyi +qyi ) for i = 1, 2, · · · , n, 2l0 |(pzj+qzj )
for j = 1, 2, · · · ,m.

Because all the Z2 symmetries for the 3-branes are
equivalent, we write them as P y′z′

. Denoting the field with
(P y, P z, P y′z′

) = (±,±,±) by φ±±±, we obtain the fol-
lowing KK mode expansions:

φ+++(xµ, y, z)

=
∞∑
n=0

∞∑
m=0

(
φ

(2n,2m)
+++ (xµ)A2n

++(y, r1)A2m
++(z, r2)
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+ φ
(2n+1,2m+1)
+++ (xµ)A2n+1

+− (y, r1)A2m+1
+− (z, r2)

)
, (102)

φ++−(xµ, y, z)

=
∞∑
n=0

∞∑
m=0

(
φ

(2n,2m+1)
++− (xµ)A2n

++(y, r1)A2m+1
+− (z, r2)

+ φ
(2n+1,2m)
++− (xµ)A2n+1

+− (y, r1)A2m
++(z, r2)

)
, (103)

φ+−+(xµ, y, z)

=
∞∑
n=0

∞∑
m=0

(
φ

(2n,2m+1)
+−+ (xµ)A2n

++(y, r1)A2m+1
−+ (z, r2)

+ φ
(2n+1,2m+2)
+−+ (xµ)A2n+1

+− (y, r1)A2m+2
−− (z, r2)

)
, (104)

φ+−−(xµ, y, z)

=
∞∑
n=0

∞∑
m=0

(
φ

(2n,2m+2)
+−− (xµ)A2n

++(y, r1)A2m+2
−− (z, r2)

+ φ
(2n+1,2m+1)
+−− (xµ)A2n+1

+− (y, r1)A2m+1
−+ (z, r2)

)
, (105)

φ−++(xµ, y, z)

=
∞∑
n=0

∞∑
m=0

(
φ

(2n+1,2m)
−++ (xµ)A2n+1

−+ (y, r1)A2m
++(z, r2)

+ φ
(2n+2,2m+1)
−++ (xµ)A2n+2

−− (y, r1)A2m+1
+− (z, r2)

)
, (106)

φ−+−(xµ, y, z)

=
∞∑
n=0

∞∑
m=0

(
φ

(2n+1,2m+1)
−+− (xµ)A2n+1

−+ (y, r1)A2m+1
+− (z, r2)

+ φ
(2n+2,2m)
−+− (xµ)A2n+2

−− (y, r1)A2m
++(z, r2)

)
, (107)

φ−−+(xµ, y, z)

=
∞∑
n=0

∞∑
m=0

(
φ

(2n+1,2m+1)
−−+ (xµ)A2n+1

−+ (y, r1)A2m+1
−+ (z, r2)

+ φ
(2n+2,2m+2)
−−+ (xµ)A2n+2

−− (y, r1)A2m+2
−− (z, r2)

)
, (108)

φ−−−(xµ, y, z)

=
∞∑
n=0

∞∑
m=0

(
φ

(2n+1,2m+2)
−−− (xµ)A2n+1

−+ (y, r1)A2m+2
−− (z, r2)

+ φ
(2n+2,2m+1)
−−− (xµ)A2n+2

−− (y, r1)A2m+1
−+ (z, r2)

)
. (109)

The 4-dimensional fields φ(n,m) acquire masses (n2/r21 +
m2/r22)

1/2 upon the compactification. The zero modes are
contained only in the φ+++ fields. Moreover, because 0 <
r1 ≤ R1, and 0 < r2 ≤ R2, the masses of the KK states
((n2/r21 + m2/r22)

1/2) can be set arbitrarily heavy if Ly
and Lz are large enough, i.e., we choose suitable (pyi , q

y
i )

for some i, and (pzj , q
z
j ) for some j. Therefore, there is

no simple relation between the physical size of the extra
dimensions and the mass scales of the KK states.

In short, we can have three non-equivalent Z2 symme-
tries where two are global symmetries. To be explicit, we
would like to give an example: n = 1, 2|(py1 + qy1 ), and
2|(pz1 + qz1). In this simple example, the local Z2 symme-
try for the 3-brane can become global if py1 = qy1 = 1 and

pz1 = qz1 = 1, and this global symmetry can be moduloed;
then, the space-time is M4 × (S1/Z2 × S1/Z2)/Z2.

6 GUT breaking
on the space-time M4 × M1 × M1

In this section, we would like to discuss the GUT break-
ing on the space-time M4 ×M1 ×M1. As we know, the 6-
dimensional N = 1 supersymmetric theory is chiral, where
the gaugino (and gravitino) has positive chirality and the
matter particles (hypermultiplets) have negative chirality,
so it often has an anomaly except that we put the standard
model fermions on the brane and add a multiplet in the
adjoint representation of the gauge group or some other
matter contents in the bulk to cancel the gauge anomaly.
The 6-dimensional non-supersymmetric GUT models and
N = 1 supersymmetric GUT models can be considered
as special cases of N = 2 supersymmetric GUT models,
so we only discuss the 6-dimensional N = 2 supersym-
metric GUT models. The N = 2 supersymmetric SU(5),
SU(6), SU(7), SO(10), and SO(12) models on the space-
timeM4×T 2/(Z2)3 andM4×T 2/(Z2)4 have been studied
completely in [8], and those discussions can be extended to
the complete discussions of GUT breaking on the space-
time M4 × M1 × M1 where there are three and four Z2
symmetries. Because the discussions for GUT breaking are
similar, we will not give the complete discussions for the
SU(M) and SO(2M) models in this paper. To explain the
idea, we will discuss theN = 2 supersymmetric SU(6) and
SO(10) models on M4 × S1 × S1 where there are four Z2
symmetries, and the N = 2 supersymmetric SU(6) model
with gauge–Higgs unification on M4 × S1/Z2 × S1/Z2
where there are three Z2 symmetries.

Let us explain the 6-dimensional gauge theory with
N = 2 supersymmetry. N = 2 supersymmetric theory
in 6-dimension has 16 real supercharges, corresponding to
N = 4 supersymmetry in 4-dimension. So, only the vector
multiplet can be introduced in the bulk, and we have to
put the standard model fermions on the 4-branes, 3-branes
or 4-brane intersections. In terms of the 4-dimensional
N = 1 language, it contains a vector multiplet V (Aµ, λ1),
and three chiral multiplets Σ5, Σ6, and Φ. All of these are
in the adjoint representation of the gauge group. In addi-
tion, the Σ5 and Σ6 chiral multiplets contain the gauge
fields A5 and A6 in their lowest components, respectively.

In the Wess–Zumino gauge and 4-dimensional N = 1
language, the bulk action is [14]

S =
∫

d6x

{
Tr

[∫
d2θ

(
1

4kg2 WαWα

+
1
kg2

(
Φ∂5Σ6 − Φ∂6Σ5 − 1√

2
Φ[Σ5, Σ6]

))
+ H.C.

]

+
∫

d4θ
1
kg2Tr

[
6∑
i=5

(
(
√
2∂i +Σ†

i )e
−V (−

√
2∂i +Σi)eV

+ ∂ie−V ∂ieV
)
+ Φ†e−V ΦeV

]}
. (110)
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The gauge transformation is given by

eV → eΛeV eΛ
†
, (111)

Σi → eΛ(Σi −
√
2∂i)e−Λ, (112)

Φ → eΛΦe−Λ, (113)

where i = 5, 6.
From the action, we obtain the vector multiplet trans-

formations under the Z2 operators P y
i , P

z
j , P

y′z′
:

V (xµ,−y′
i, z) = P y

i V (xµ, y′
i, z)(P

y)−1, (114)

Σ5(xµ,−y′
i, z) = −P y

i Σ5(xµ, y′
i, z)(P

y
i )

−1, (115)

Σ6(xµ,−y′
i, z) = P y

i Σ6(xµ, y′
i, z)(P

y
i )

−1, (116)

Φ(xµ,−y′
i, z) = −P y

i Φ(x
µ, y′

i, z)(P
y
i )

−1, (117)

V (xµ, y,−z′
j) = P z

j V (xµ, y, z′
j)(P

z
j )

−1, (118)

Σ5(xµ, y,−z′
j) = P z

j Σ5(xµ, y, z′
j)(P

z
j )

−1, (119)

Σ6(xµ, y,−z′
j) = −P z

j Σ6(xµ, y, z′
j)(P

z
j )

−1, (120)

Φ(xµ, y,−z′
j) = −P z

j Φ(x
µ, y, z′

j)(P
z
j )

−1, (121)

V (xµ,−y′
i,−z′

i) = P y′z′
V (xµ, y′

i, z
′
i)(P

y′z′
)−1, (122)

Σ5(xµ,−y′
i,−z′

i) = −P y′z′
Σ5(xµ, y′

i, z
′
i)(P

y′z′
)−1, (123)

Σ6(xµ,−y′
i,−z′

i) = −P y′z′
Σ6(xµ, y′

i, z
′
i)(P

y′z′
)−1, (124)

Φ(xµ,−y′
i,−z′

i) = P y′z′
Φ(xµ, y′

i, z
′
i)(P

y′z′
)−1. (125)

6.1 SU(6) and SO(10) breaking on M4 × S1 × S1

In this subsection, we would like to discuss the SU(6) and
SO(10) models on M4×S1×S1. We require the following.
(1) There are no zero modes for the chiral multiplets Σ5,
Σ6 and Φ, and
(2) for the zero modes, we only have the 4-dimensional
N = 1 supersymmetric SU(3) × SU(2) × U(1)2 model.

For simplicity, we assume that there are four 4-branes,
where two are along the y direction and two along the z
direction, 4|(py1+qy1 ), and 4|(pz1+qz1). So, we will have four
local Z2 symmetries: P y

0 , P
y
1 , P

z
0 and P z

1 .
We will choose the unit matrix representations for P y

0
and P z

0 in the adjoint representation of the GUT gauge
group. So, considering the zero modes, under a P y

0 projec-
tion, we can break the 4-dimensional N = 4 supersymme-
try to N = 2 supersymmetry with (V,Σ6) forming a vec-
tor multiplet and (Σ5, Φ) forming a hypermultiplet, and
we can break the 4-dimensional N = 2 supersymmetry to
N = 1 supersymmetry further by a P z

0 projection.
For a generic bulk field φ(xµ, y, z), we can define four

parity operators P y
0 , P

y
1 , P

z
0 and P z

1 , respectively. De-
noting the field with (P y

0 , P
y
1 , P

z
0 , P

z
1 ) = (±,±,±,±) by

φ±±±±, we obtain the KK mode expansions, which are
those given in (61)–(76).
(I) SU(6) model. We need to choose the matrix represen-
tations for the parity operators P y

0 , P
y
1 , P

z
0 and P z

1 , which
are expressed in the adjoint representaion of SU(6). Be-
cause SU(6) ⊃ SU(5) × U(1), SU(4) × SU(2) × U(1),

SU(3) × SU(3) × U(1), we find that, in general, P y
1 and

P z
1 just need to be any two different representations from

these three representations: diag(+1,+1,+1,+1,+1,−1),
diag(−1,−1,−1,+1,+1,−1), and diag(−1,−1,−1,+1,
+1,+1). So the matrix representations for P y

0 , P
z
0 , P

y
1

and P z
1 are2

P y
0 = diag(+1,+1,+1,+1,+1,+1),

P z
0 = diag(+1,+1,+1,+1,+1,+1), (126)

P y
1 = diag(+1,+1,+1,+1,+1,−1),

P z
1 = diag(−1,−1,−1,+1,+1,−1), (127)

or

P y
1 = diag(+1,+1,+1,+1,+1,−1),

P z
1 = diag(−1,−1,−1,+1,+1,+1), (128)

or

P y
1 = diag(−1,−1,−1,+1,+1,+1),

P z
1 = diag(−1,−1,−1,+1,+1,−1). (129)

Let us point out that

SU(6)/{diag(+1,+1,+1,+1,+1,−1)}
≈ SU(5) × U(1), (130)

SU(6)/{diag(−1,−1,−1,+1,+1,−1)}
≈ SU(4) × SU(2) × U(1), (131)

SU(6)/{diag(−1,−1,−1,+1,+1,+1)}
≈ SU(3) × SU(3) × U(1). (132)

(II) SO(10) model. We choose the following matrix rep-
resentations for the parity operators P y

0 , P
z
0 , P

y
1 , and

P z
1 , which are expressed in the adjoint representaion of

SO(10):

P y
0 = diag(+σ0,+σ0,+σ0,+σ0,+σ0), (133)

P z
0 = diag(+σ0,+σ0,+σ0,+σ0,+σ0), (134)

P y
1 = diag(σ2, σ2, σ2, σ2, σ2), (135)

P z
1 = diag(−σ0,−σ0,−σ0,+σ0,+σ0), (136)

where σ0 is the 2 × 2 unit matrix and σ2 is the Pauli
matrix.

We would like to point out that

SO(10)/P y
1 ≈ SU(5) × U(1), (137)

SO(10)/P z
1 ≈ SU(4) × SU(2) × SU(2). (138)

Now, we discuss the GUT breaking for SU(6) and
SO(10) together. Assume G = SU(6) or G = SO(10).
Under the P y

1 and P z
1 parities, the gauge generators TA,

where A = 1, 2, · · · , 35 for SU(6) and 45 for SO(10) are
separated into four sets: T a,b are the gauge generators for
the SU(3) × SU(2) × U(1) × U(1) gauge symmetry, T a,b̂,

2 For the SU(6) model and SO(10) model, one can inter-
change the matrix representations P y

1 and P z
1 , i.e., P

y
1 ←→ P z

1 ,
and the discussions are similar
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Table 2. Parity assignment and masses (n ≥ 0, m ≥ 0) for the
vector multiplet in the SU(6) or SO(10) models on M4×S1×
S1

(P y
0 , P y

1 , P z
0 , P z

1 ) Field Mass

(+,+,+,+) V a,b
µ

√
(2n)2/r2

1 + (2m)2/r2
2

(+,+,+,−) V a,b̂
µ

√
(2n)2/r2

1 + (2m + 1)2/r2
2

(+,−,+,+) V â,b
µ

√
(2n + 1)2/r2

1 + (2m)2/r2
2

(+,−,+,−) V â,b̂
µ

√
(2n + 1)2/r2

1 + (2m + 1)2/r2
2

(−,−,+,+) Σa,b
5

√
(2n + 2)2/r2

1 + (2m)2/r2
2

(−,−,+,−) Σa,b̂
5

√
(2n + 2)2/r2

1 + (2m + 1)2/r2
2

(−,+,+,+) Σâ,b
5

√
(2n + 1)2/r2

1 + (2m)2/r2
2

(−,+,+,−) Σâ,b̂
5

√
(2n + 1)2/r2

1 + (2m + 1)2/r2
2

(+,+,−,−) Σa,b
6

√
(2n)2/r2

1 + (2m + 2)2/r2
2

(+,+,−,+) Σa,b̂
6

√
(2n)2/r2

1 + (2m + 1)2/r2
2

(+,−,−,−) Σâ,b
6

√
(2n + 1)2/r2

1 + (2m + 2)2/r2
2

(+,−,−,+) Σâ,b̂
6

√
(2n + 1)2/r2

1 + (2m + 1)2/r2
2

(−,−,−,−) Φa,b
√
(2n + 2)2/r2

1 + (2m + 2)2/r2
2

(−,−,−,+) Φa,b̂
√
(2n + 2)2/r2

1 + (2m + 1)2/r2
2

(−,+,−,−) Φâ,b
√
(2n + 1)2/r2

1 + (2m + 2)2/r2
2

(−,+,−,+) Φâ,b̂
√
(2n + 1)2/r2

1 + (2m + 1)2/r2
2

T â,b, and T â,b̂ are the other broken gauge generators which
belong to {G/P y

1 ∩{cosetG/P z
1 }}, {{cosetG/P y

1 }∩G/P z
1 },

and {{cosetG/P y
1 } ∩ {cosetG/P z

1 }}, respectively. There-
fore, under P y

0 , P
z
0 , P

y
1 and P z

1 , the gauge generators
transform as

P y
0 T

A,B(P y
0 )

−1 = TA,B , P z
0 T

A,B(P z
0 )

−1 = TA,B , (139)

P y
1 T

a,B(P y
1 )

−1 = T a,B , P y
1 T

â,B(P y
1 )

−1 = −T â,B , (140)
P z

1 T
A,b(P z

1 )
−1 = TA,b, P z

1 T
A,b̂(P z

1 )
−1 = −TA,b̂. (141)

The particle spectra are given in Table 2, and the gauge
superfields, the number of 4-dimensional supersymmetry
and the gauge group on the 4-branes or 4-brane intersec-
tions are given in Table 3. For the zero modes, we only have
4-dimensional N = 1 supersymmetric SU(3) × SU(2) ×
U(1)×U(1) model in the bulk. From Table 3, we see that,
including the KK modes, the 3-brane (the intersection of
4-branes) and 4-brane preserve N = 1 and N = 2 super-
symmetry, respectively. The gauge group on the 3-brane
can be G, or G/P z

1 , or G/P
y
1 , or SU(3)×SU(2)×U(1)×

U(1). And the gauge group on the 4-brane can be G, or
G/P y

1 or G/P z
1 . The phenomenology discussions are sim-

ilar to those in [8].

6.2 SU(6) breaking on M4 × S1/Z2 × S1/Z2

In this subsection, we would like to discuss the SU(6)
model on M4 × S1/Z2 × S1/Z2 in which there are two
global Z2 symmetries and one local Z2 symmetry. Al-
though we cannot project out all the zero modes for the

chiral multiplets Σ5, Σ6 and Φ, we require that the extra
zero modes are only from Φ and form two Higgs doublets,
which is called gauge–Higgs unification. Our basic require-
ments are
(1) there are no zero modes for the chiral multiplets Σ5
and Σ6;
(2) considering the zero modes, there is only one pair
of Higgs doublets because if we had two pairs of Higgs
doublets, we may have a flavour changing neutral current
problem.

For simplicity, we assume that there are only four 4-
branes, which are the boundaries for S1/Z2×S1/Z2, there
is only one 3-brane in the bulk, and 2|(py1+qy1 ), 2|(pz1+qz1).
So we will have two global Z2 symmetries P y and P z, and
one local Z2 symmetry P y′z′

. In order to project out all
the zero modes of Σ5 and Σ6, we would like to choose the
matrix representation of P y equal to that of P z.

For a generic bulk field φ(xµ, y, z), we can define three
parity operators P y, P z, P y′z′

, respectively. Denoting the
field by (P y, P z, P y′z′

) = (±,±,±) by φ±±±, we obtain
the KK mode expansions which are given in (102)–(109).

There are two scenarios which have gauge–Higgs uni-
fication.
(1) We choose the matrix representations for P y, P z and
P y′z′

as follows:

P y = P z = diag(+1,+1,+1,+1,+1,−1), (142)

P y′z′
= diag(−1,−1,−1,+1,+1,+1). (143)

(2) We choose the matrix representations for P y, P z, and
P y′z′

as follows:

P y = P z = diag(−1,−1,−1,+1,+1,−1), (144)

P y′z′
= diag(−1,−1,−1,+1,+1,+1). (145)

Under P y (or P z) and P y′z′
parities, the gauge gener-

ators TA, where A = 1, 2, · · · , 35 for SU(6) are separated
into four sets: T a,b are the gauge generators for SU(3) ×
SU(2)×U(1)×U(1) gauge symmetry, T a,b̂, T â,b, and T â,b̂

are the other broken gauge generators which belong to
{G/P y ∩{cosetG/P y′z′}}, {{cosetG/P y}∩G/P y′z′}, and
{{cosetG/P y}∩{cosetG/P y′z′}}, respectively. Therefore,
under P y, P z, and P y′z′

, the gauge generators transform
as

P yT a,B(P y)−1 = T a,B ,

P yT â,B(P y)−1 = −T â,B , (146)

P zT a,B(P z)−1 = T a,B ,

P zT â,B(P z)−1 = −T â,B , (147)

P y′z′
TA,b(P y′z′

)−1 = TA,b,

P y′z′
TA,b̂(P y′z′

)−1 = −TA,b̂. (148)

We present the particle spectra in Table 4, and the
number of 4-dimensional supersymmetry and gauge sym-
metries on the 3-brane, 4-brane intersections and 4-branes
in Table 5. Because the 3-brane is the fixed point under
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Table 3. For the model G = SU(6) or G = SO(10) on M4 × S1 × S1, the gauge
superfields, the number of 4-dimensional supersymmetry and gauge symmetries on
the interesections of 4-branes, which are located at (y = 0, z = 0), (y = 0, z = z1),
(y = y1, z = 0), and (y = y1, z = z1), or on the 4-branes which are located at y = 0,
z = 0, y = y1, z = z1

Brane position Fields SUSY Gauge symmetry

(0, 0) V A,B
µ N = 1 G

(0, z1) V A,b
µ , ΣA,b̂

6 N = 1 G/P z
1

(y1, 0) V a,B
µ , Σâ,B

5 N = 1 G/P y
1

(y1, z1) V a,b
µ , Σâ,b

5 , Σa,b̂
6 , Φâ,b̂ N = 1 SU(3)× SU(2)× U(1)× U(1)

y = 0 V A,B
µ , ΣA,B

6 N = 2 G

z = 0 V A,B
µ , ΣA,B

5 N = 2 G

y = y1 V a,B
µ , Σâ,B

5 , Σa,B
6 , Φâ,B N = 2 G/P y

1

z = z1 V A,b
µ , ΣA,b

5 , ΣA,b̂
6 , ΦA,b̂ N = 2 G/P z

1

P y′z′
symmetry, it preserves 4-dimensional N = 2 su-

persymmetry. The 4-branes are the fixed lines under one
global symmetry, the 4-brane intersections and 4-branes
preserve 4-dimensional N = 1 and N = 2 supersymme-
try, respectively. The phenomenology discussions are also
similar to those in [8].

7 Discrete symmetry
on the space-time M4 × A2

As we know, in each point of the 2-dimensional real man-
ifold, there is an open neighborhood homeomorphic to R2

in real coordinates or C1 in complex coordinates, and its
rotation group is locally SO(2) or U(1). So we may de-
fine the Zn discrete symmetry on the 2-dimensional man-
ifold in which n is any positive integer and we can break
any supersymmetric SU(M) GUT models down to the
4-dimensional N = 1 supersymmetric SU(3) × SU(2) ×
U(1)M−4 models for the zero modes. One obvious candi-
date for the extra space manifold is the disc D2 where
there is one 3-brane at the origin and one 4-brane at the
outer boundary. To be general, we can consider that the
extra space manifold is the annulus where there are two
boundary 4-branes. For simplicity, we denote the annulus
by A2.

Furthermore, we discuss the KK mode expansions on
the space-time M4× (a segment of A2), and find that the
masses of the KK states might be set arbitrarily heavy if
the range of the angle is small enough.

7.1 Discrete symmetry on M4× A2

We consider that the extra space manifold is the annulus
A2. Convenient coordinates for the annulus A2 are the
polar coordinates (r, θ), and it is easy to change these to
complex coordinates by z = reiθ. We assume that the
innner radius of the annulus is R1, and the outer radius
of the annulus is R2. Taking R1 = 0, we obtain the disc
D2. Considering Zn symmetry on A2, we define

Table 4. Parity assignment and masses (n ≥ 0, m ≥ 0) for the
vector multiplet in the SU(6) model on M4 × S1/Z2 × S1/Z2

(P y, P z, P y′z′
) Field Mass

(+,+,+) V ab
µ , Φâb

√
(2n)2/r2

1 + (2m)2/r2
2

or
√
(2n + 1)2/r2

1 + (2m + 1)2/r2
2

(+,+,−) V ab̂
µ , Φâb̂

√
(2n + 1)2/r2

1 + (2m)2/r2
2

or
√
(2n)2/r2

1 + (2m + 1)2/r2
2

(+,−,+) Σâb̂
5 , Σab̂

6

√
(2n)2/r2

1 + (2m + 1)2/r2
2

or
√
(2n + 1)2/r2

1 + (2m + 2)2/r2
2

(+,−,−) Σâb
5 , Σab

6

√
(2n)2/r2

1 + (2m + 2)2/r2
2

or
√
(2n + 1)2/r2

1 + (2m + 1)2/r2
2

(−,+,+) Σab̂
5 , Σâb̂

6

√
(2n + 1)2/r2

1 + (2m)2/r2
2

or
√
(2n + 2)2/r2

1 + (2m + 1)2/r2
2

(−,+,−) Σab
5 , Σâb

6

√
(2n + 2)2/r2

1 + (2m)2/r2
2

or
√
(2n + 1)2/r2

1 + (2m + 1)2/r2
2

(−,−,+) V âb
µ , Φab

√
(2n + 1)2/r2

1 + (2m + 1)2/r2
2

or
√
(2n + 2)2/r2

1 + (2m + 2)2/r2
2

(−,−,−) V âb̂
µ , Φab̂

√
(2n + 2)2/r2

1 + (2m + 1)2/r2
2

or
√
(2n + 1)2/r2

1 + (2m + 2)2/r2
2

ω = ei2π/n, (149)

and we define the generator for Zn as Ω which satifies
Ωn = 1.

For a generic bulk multiplet Φ which fills a represen-
tation of the bulk gauge group G, we have

ΩΦ(xµ, z, z̄) = Φ(xµ, ωz, ωn−1z̄)

= ηΦ(RΩ)lΦΦ(xµ, z, z̄)(R−1
Ω )mΦ , (150)

where ηΦ ⊂ Zn, and RΩ is an element in the adjoint rep-
resentation of G which satisfies RnΩ = 1.
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Table 5. The G = SU(6) model with gauge–Higgs unification on M4 ×
S1/Z2 × S1/Z2. The gauge superfield Vµ, the number of 4-dimensional su-
persymmetry and gauge symmetries on the 4-brane intersections or 3-brane,
which are located at the (y = 0, z = 0), (y = 0, z = πR2), (y = πR1, z = 0),
(y = πR1, z = πR2), and (y = y1, z = z1), and on the 4-branes which are
located at the fixed lines y = 0, y = πR1, z = 0, z = πR2

Brane position Fields SUSY Gauge symmetry

(0, 0), (0, πR2), (πR1, 0), (πR1, πR2), V a,B
µ N = 1 G/P y or G/P z

(y1, z1) V A,b
µ N = 2 G/P y′z′

y = 0, y = πR1, z = 0, z = πR2 V a,B
µ N = 2 G/P y or G/P z

A generic field φ(xµ, z, z̄) with eigenvalue ωl under the
operator Ω we write as φωl(xµ, z, z̄), i.e.,

Ωφωl(xµ, z, z̄) = ωlφωl(xµ, z, z̄). (151)

The KK modes expansions for φωl(xµ, z, z̄) are

φωl(xµ, z, z̄) =
∞∑

j=−∞

∞∑
k=1

φ
(jk)
ωl (xµ)fω

l

jk (z, z̄), (152)

where l = 0, 1, · · · , n− 1, and

fω
l

jk (z, z̄) =
n−1∑
s=0

ω(n−s)lfjk(ωsz, ωn−sz̄). (153)

The functions fjk(z, z̄) are defined by

fjk(z, z̄) = Jj(λjkr)eijθ, (154)

or

fjk(z, z̄) = Jj(λjk|z|)(z/|z̄|)j , (155)

where Jj(λjkr) is the first order Bessel function, satisfying
the Dirichlet or Neumann boundary condition at r = R1
and r = R2:

Jj(λjkr) = 0 or
dJj(λjkr)
dλjkr

= 0, for r = R1 and R2.

(156)
The zero modes are contained only in the φω0 fields, i.e.
l = 0.

First, we consider that the extra space manifold is
a disc D2, i.e., R1 = 0, so we only have the boundary
condition at r = R2, and then we can have all the KK
states. There is also one fixed point under the Zn sym-
metry, which is the center of the disc. One might wonder
whether there is a singularity for fjk(z, z̄) at the origin
r = 0 when j �= 0; however, there is no singularity and we
only have zero modes at the origin because J0(0) = 1 and
Js(0) = 0 for s ≥ 1. By the way, the global Zn symmetry
can be moduloed from D2, and the corresponding orbifold
is D2/Zn.

Second, we consider that the extra space manifold is
an annulus A2. The Zn symmetry acts free on the annu-
lus A2, so we can obtain the quotient manifold A2/Zn by

moduloing the Zn symmetry. We will also have much less
KK states, i.e., a lot of KK states in the summation might
be absent because the boundary conditions at r = R1 and
r = R2 must be satisfied simultaneously. The interest-
ing phenomenology is that we might have the scenario in
which only a few KK states are light and the other KK
states are relatively heavy, so we may produce the light
KK states of the gauge fields at future colliders.

7.2 KK modes on M4× (a segment of A2)

If the extra space manifold is a segment of A2, we would
like to discuss the KK modes. We assume that the inner
radius of the annulus is R1, the outer radius of the annulus
is R2, and the angle θ is

0 ≤ θ ≤ α2π, (157)

where 0 < α < 1. The KK modes expansion for a generic
field φ is

φ(xµ, z, z̄) =
∞∑

j=−∞

∞∑
k=1

φ(jk)(xµ)fjk(z, z̄), (158)

where

fjk(z, z̄) = Jj/(4α)(λjkr)eijθ/(4α), (159)

or

fjk(z, z̄) = Jj/(4α)(λjk|z|)(z/|z̄|)j/(4α). (160)

At r = R1 and r = R2, the function Jj/(4α)(λjkr) should
satisfy the Dirichlet boundary condition or Neumann con-
dition,

Jj(λjkr) = 0 or
dJj(λjkr)
dλjkr

= 0. (161)

In short, if α is very small, then j/(4α) will be very large,
and the KK states may be set arbitrarily heavy, which is
similar to [11].

We can define the Z2 reflection symmetry on the sector
of D2 or the segment of A2. However, we cannot define
the discrete symmetry Zn for n > 2 on the sector of D2

or segment of A2, so it is not interesting for us to discuss
the supersymmetric GUT breaking in this case.
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8 GUT breaking on the space-time M4 × A2

In this section, we would like to discuss the 6-dimensional
N = 2 supersymmetric SU(M) GUT models on the space-
time M4 ×A2 or M4 ×D2.

In principle, we can break any SU(M) gauge group
on the space-time M4 × A2 or M4 × D2, because we can
choose a Zn symmetry in which n is very large. As an
example, we will discuss the SU(6) models on the space-
time M4 ×A2 or M4 ×D2 with Z9 symmetry, or one can
consider the space-time M4 ×A2/Z9 or M4 ×D2/Z9.

TheN = 2 supersymmetry in 6-dimension corresponds
to N = 4 supersymmetry in 4-dimension; thus, only the
gauge multiplet can be introduced in the bulk. This mul-
tiplet can be decomposed under the 4-dimensional N = 1
supersymmetry into a vector multiplet V and three chi-
ral multiplets Σ, Φ, and Φc in the adjoint representation,
with the fifth and sixth components of the gauge field,
A5 and A6, contained in the lowest component of Σ. The
standard model fermions are on the boundary 4-brane at
r = R1 or r = R2 for the annulus A2, and on the 3-brane
at the origin or on the boundary 4-brane at r = R2 for
the disc D2.

In the Wess–Zumino gauge and 4-dimensional N = 1
language, the bulk action is [14]

S =
∫

d6x

{
Tr

[∫
d2θ

(
1

4kg2 WαWα (162)

+
1
kg2

(
Φc∂Φ− 1√

2
Σ[Φ,Φc]

))
+ h.c.

]

+
∫

d4θ
1
kg2Tr

[
(
√
2∂† +Σ†)e−V (−

√
2∂ +Σ)eV

]

+
∫

d4θ
1
kg2Tr

[
+Φ†e−V ΦeV + Φc†e−V ΦceV

]}
.

Notice that if we consider Z9 symmetry, then ω =
ei2π/9. From the above action, we obtain the transforma-
tions of the gauge multiplet under Ω:

V (ωz, ω8z̄) = RΩV (z, z̄)R−1
Ω , (163)

Σ(ωz, ω8z̄) = ω8RΩΣ(z, z̄)R−1
Ω , (164)

Φ(ωz, ω8z̄) = ωmRΩΦ(z, z̄)R−1
Ω , (165)

Φc(ωz, ω8z̄) = ω10−mRΩΦc(z, z̄)R−1
Ω , (166)

where 0 ≤ m ≤ 8; RΩ is an element in the adjoint repre-
sentation of the GUT gauge group and satisfies the equa-
tion R9

Ω = 1. To be compatible with our previous discus-
sions in Sect. 6, we choose m = 8, and then

Φ(ωz, ω8z̄) = ω8RΩΦ(z, z̄)R−1
Ω , (167)

Φc(ωz, ω8z̄) = ω2RΩΦ
c(z, z̄)R−1

Ω . (168)

Now, we would like to discuss the supersymmetric
SU(6) model. We choose the following matrix represen-
tations for the Z9 operator Ω, RΩ , which are expressed in
the adjoint representation of SU(6):

RΩ = diag(ω2, ω2, ω2, ω8, ω8, ω5). (169)

So, upon using the Z9 operator Ω, the gauge generators
TA, where A = 1, 2, · · · , 35 for SU(6) are separated into
two sets: T a are the gauge generators for the SU(3) ×
SU(2)×U(1)2 gauge group, and T â are the other broken
gauge generators:

RΩT
aR−1

Ω = T a, RΩT
â R−1

Ω = −T â. (170)

First, we consider that the extra space manifold is the
annulus A2. For the zero modes, we have 4-dimensional
N = 1 supersymmetry and SU(3)×SU(2)×U(1)2 gauge
symmetry in the bulk and on the 4-branes at r = R1
and r = R2. Including the KK states, we will have the
4-dimensional N = 4 supersymmetry and SU(6) gauge
symmetry in the bulk, and on the 4-branes at r = R1 and
r = R2.

Second, we consider that the extra space manifold is
the disc D2. For the zero modes, we have 4-dimensional
N = 1 supersymmetry and SU(3)×SU(2)×U(1)2 gauge
symmetry in the bulk and on the 4-brane at r = R2.
Including all the KK states, we will have the 4-dimensional
N = 4 supersymmetry and SU(6) gauge symmetry in the
bulk, and on the 4-brane at r = R2. In addition, we always
have 4-dimensional N = 1 supersymmetry and SU(3) ×
SU(2) × U(1)2 gauge symmetry on the 3-brane at the
origin in which only the zero modes exist. So, if we put
the standard model fermions on the 3-brane at the origin,
the extra dimensions can be large and the gauge hierarchy
problem can be solved, for there does not exist a proton
decay problem at all.

In order to break the extra U(1) symmetry, we have
to introduce the extra chiral multiplets which are singlets
under the standard model gauge symmetry, and use the
Higgs mechanism. If we considered the chiral model on
the observable brane, we will have to introduce the exotic
particles due to the anomaly cancellation.

In short, we can introduce Zn symmetry to break any
supersymmetric SU(M) GUT models as long as n is large
enough. There are 4-dimensional N = 1 supersymme-
try and SU(3) × SU(2) × U(1)M−4 gauge symmetries in
the bulk and on the 4-branes for the zero modes, and
on the 3-brane at the origin in the disc D2 scenario. In-
cluding all the KK states, we will have the 4-dimensional
N = 4 supersymmetry and SU(M) gauge symmetry in
the bulk, and on the 4-branes. In addition, the standard
model fermions are on the boundary 4-brane at r = R1 or
r = R2 if the extra space manifold is the annulus A2, and
on the 3-brane at the origin or on the boundary 4-brane
at r = R2 if the extra space manifold is the disc D2.

9 Discrete symmetry
on the space-time M4 × T 2

In this section, we would like to discuss the discrete sym-
metry on the space-timeM4×T 2. Because for any point in
T 2, there is an open neighborhood which is homeomorphic
to R2, naively, one might think that one can introduce any
Zn symmetry on T 2. However, this is not true. In fact, we
can prove that the only discrete symmetries on the torus
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from the rotation group SO(2) or U(1) are Z2, Z3, Z4,
and Z6.

The proof is as follows. In complex coordinates, the
torus T 2 can be defined by C1 modulo the equivalent
classes: z ∼ z + 2πR1 and z ∼ z + 2πR2ω where ω = eiθ.
So we need to discuss the Z2, Z3 and Zn symmetries for
n > 3 separately.

First, we consider Z2 symmetry; the equivalent class is
z ∼ −z, and the two fixed points are z = 0 and z = πR1+
πR2ω. Therefore, the global Z2 symmetry can be defined
on the general torus T 2. The 3-branes can be located at
the fixed points.

Second, we consider Z3 symmetry. We have to choose
R1 = R2 = R. Define θ = 2π/3; we obtain the equivalent
class z ∼ z + 2πRω equivalent to the equivalence class
z ∼ z + 2πReiπ/3. There are three fixed points: z = 0,
z = 2πReiπ/6/31/2, and z = 4πReiπ/6/31/2. The 3-branes
can be located at the fixed points.

Third, in order to define the Zn symmetry for n >
3, we have to choose θ = 2π/n and R1 = R2 = R. In
addition, ω should satisfy the following equations:

2πRω = l′2πR+ k′2πRω, (171)

2πRωω = l2πR+ k2πRω, (172)

where l, k, l′ and k′ are integers. The first equation is
satisfied by choosing l′ = 0 and k′ = 1. Moreover, from
the second equation, we obtain

ω =
l ± √

l2 + 4k
2

. (173)

The complete solutions are l = 0 and k = ±1, l = 1 and
k = −1. Then all the possible ω are ±1, ±i, ei2π/3, ei2π/6.
Therefore, the discrete symmetries Zn for n > 3 on the
torus from the rotation group SO(2) or U(1) are Z4 and
Z6. Moreover, for the Z4 discrete symmetry, there are two
Z4 fixed points: z = 0 and z = 21/2πReiπ/4, two Z2 fixed
points: z = πR and z = πReiπ/2. For Z6 discrete symme-
try, there is one Z6 fixed point z = 0, and there are two Z3
fixed points: z = 2πReiπ/6/31/2 and z = 4πReiπ/6/31/2,
and three Z2 fixed points: z = 31/2πReiπ/6, z = πR and
z = πReiπ/3. The 3-branes can be located at those fixed
points.

For the general T 2 defined by the equivalence classes
z ∼ z+2πR1 and z ∼ z+2πR2eiθ, the KK modes expan-
sion for a generic field φ is

φ(xµ, z, z̄) =
+∞∑
j=−∞

+∞∑
k=−∞

φ(jk)(xµ)fjk(z, z̄), (174)

where

fjk(z, z̄) = exp{i[(a− ib)z + (a+ ib)z̄]}, (175)

and

a =
j

2R1
, (176)

b =
1

sin θ

(
k

2R2
− j

2R1
cos θ

)
. (177)

The mass for φjk is

M2
φjk =

1
sin θ2

[
j2

4R2
1
+

k2

4R2
2

− 2jk
4R1R2

cos θ
]
. (178)

The zero modes are contained in φ(00) sector, i.e., j = 0
and k = 0.

The fundamental group for the torus is Z
⊕

Z, so one
might think we can break the gauge symmetry by a Wilson
line in the mean time. The key question is how to define
the suitable KK mode expansions for the bulk fields in the
Wilson line approach, because we require that the fields
without zero modes should have KK mode excitations.

10 GUT breaking on the space-time M4 × T 2

We would like to consider the 6-dimensional N = 2 super-
symmetric SU(5) model on M4 × T 2 with Z6 symmetry.

Notice that we consider Z6 symmetry; we define ω =
ei2π/6. From the action in (162), we obtain the transfor-
mations of the gauge multiplet under Ω:

V (ωz, ω5z̄) = RΩV (z, z̄)R−1
Ω , (179)

Σ(ωz, ω5z̄) = ω5RΩΣ(z, z̄)R−1
Ω , (180)

Φ(ωz, ω5z̄) = ω5RΩΦ(z, z̄)R−1
Ω , (181)

Φc(ωz, ω5z̄) = ω2RΩΦ
c(z, z̄)R−1

Ω , (182)

where RΩ is an element in the adjoint representation of
SU(5) and satisfies the equation R6

Ω = 1.
We choose the following matrix representations for the

Z6 operator Ω, RΩ , which are expressed in the adjoint
representation of SU(5):

RΩ = diag(1, 1, 1,−1,−1). (183)

So, upon using the Z6 operator Ω, the gauge generators
TA, where A = 1, 2, · · · , 24, for SU(5) are separated into
two sets: T a are the gauge generators for the standard
model gauge group, and T â are the other broken gauge
generators

RΩT
aR−1

Ω = T a, RΩT
âR−1

Ω = −T â. (184)

In addition, the representation of the generator for Z2
symmetry is

R3
Ω = diag(1, 1, 1,−1,−1), (185)

and the representation of the generator for Z3 symmetry
is

R2
Ω = diag(1, 1, 1, 1, 1). (186)

Therefore, the gauge symmetries on the 3-branes at the
Z2 fixed points and on the 3-branes at the Z3 fixed points
are

SU(5)/R3
Ω ≈ SU(3) × SU(2) × U(1), (187)

SU(5)/R2
Ω ≈ SU(5). (188)
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Table 6. The G = SU(5) model on M4 × T 2 with Z6 symmetry. The gauge
multiplet, the number of 4-dimensional supersymmetry and gauge symmetry
on the 3-branes, which are located at the Z6 fixed point z = 0; the Z3 fixed
points: z = 2πReiπ/6/31/2, and z = 4πReiπ/6/31/2; and the Z2 fixed points:
z = 31/2πReiπ/6, z = πR, and z = πReiπ/3

Brane position Fields SUSY Gauge symmetry

z = 0 V a N = 1 SU(3)× SU(2)× U(1)

z = 2πReiπ/6/31/2, V A, Σa, Φa, (Φc)â N = 1 SU(5)

z = 4πReiπ/6/31/2

z = 31/2πReiπ/6, V a, ΣA, ΦA, (Φc)A N = 4 SU(3)× SU(2)× U(1)

z = πR, z = πReiπ/3

The gauge multiplet, the number of 4-dimensional su-
persymmetry and gauge symmetries on the 3-branes are
given in Table 6. In short, we have 4-dimensional N = 1
supersymmetry and the standard model gauge symmetry
in the bulk for the zero modes, and on the 3-brane at Z6
fixed point for all the modes. Including the KK states,
we will have the 4-dimensional N = 4 supersymmetry
and SU(5) gauge symmetry in the bulk, the 4-dimensional
N = 1 supersymmetry and SU(5) gauge symmetry on the
3-branes at Z3 fixed points, and the 4-dimensional N = 4
supersymmetry and SU(3) × SU(2) × U(1) gauge sym-
metry on the 3-branes at Z2 fixed points. The standard
model fermions and Higgs fields can be on any 3-brane at
one of the fixed points. In particular, if we put the stan-
dard model fermions and Higgs fields on the 3-brane at
the Z6 fixed point, the extra dimensions can be large and
the gauge hierarchy problem can be solved because there
is no proton decay problem at all.

11 Discussion and conclusion

With the ansatz that there exist local or global discrete
symmetries in the special branes’ neighborhoods, we dis-
cuss the general reflection Z2 symmetries on the space-
time M4 × M1 and M4 × M1 × M1. We find that we
can have at most two Z2 symmetries on M4 × M1 and
four Z2 symmetries on M4 × M1 × M1. As represen-
tatives, we discuss the N = 1 supersymmetric SU(5)
model on the space-time M4 × M1, where the standard
model fermions can be in the bulk or on the 3-brane, the
N = 2 supersymmetric SU(6) and SO(10) models on the
space-time M4 × S1 × S1 and the N = 2 supersymmetric
SU(6) model with gauge–Higgs unification on the space-
time M4 × S1/Z2 × S1/Z2, where the standard model
fermions must be on the 4-brane, or 3-brane, or 4-brane
intersection. For the zero modes, we have 4-dimensional
N = 1 supersymmetry and SU(3) × SU(2) × U(1)n−3

gauge symmetry in which n is the rank of the GUT gauge
group. The gauge symmetry and supersymmetry may be
broken on the 3-branes, or 4-branes, or 4-brane intersec-
tions. In particular, in those models, the extra dimensions
can be large and the masses of KK states can be set arbi-
trarily heavy.

In addition, we discuss the discrete Zn symmetry on
the space-time M4 × A2 and M4 × D2 in which n is any
positive integer. In this kind of scenario, we can break
any SU(M) gauge symmetry for M ≥ 5 down to the
SU(3) × SU(2) ×U(1)M−4 gauge symmetry by introduc-
ing the global Zn symmetry as long as n is large enough.
In general, considering the 6-dimensional N = 2 super-
symmetry, we have 4-dimensional N = 1 supersymmetry
and SU(3) × SU(2) × U(1)M−4 gauge symmetry in the
bulk and on the 4-branes for the zero modes, and on the
3-brane at the origin where only the zero modes exist in
the disc D2 scenario. Including all the KK states, we will
have 4-dimensional N = 4 supersymmetry and SU(M)
gauge symmetry in the bulk, and on the 4-branes. The
standard model fermions should be on the boundary 4-
brane or 3-brane at the origin. By the way, if we put the
standard model fermions on the 3-brane at the origin, the
extra dimensions can be large and the gauge hierarchy
problem can be solved for there does not exist a proton
decay problem at all. Moreover, if the extra space manifold
is the annulus A2, for suitable choices of the inner radius
and outer radius we might construct the models where
only a few KK states are light and the other KK states
are relatively heavy due to the boundary conditions on
the inner and outer boundaries, so we might produce the
light KK states of gauge fields at future colliders, which
is very interesting in collider physics.

If the extra space manifold is a sector of D2 or a seg-
ment of A2, we point out that the masses of KK states can
be set arbitrarily heavy if the range of the angle is small
enough.

Furthermore, we discuss the complete global discrete
symmetry on the space-time M4 × T 2. We prove that the
possible global discrete symmetries on the torus is Z2, Z3,
Z4, and Z6. We also discuss the 6-dimensional N = 2 su-
persymmetric SU(5) models on the space-time M4 × T 2

with Z6 symmetry. There is 4-dimensional N = 1 super-
symmetry and the standard model gauge symmetry in the
bulk for the zero modes, and on the 3-brane at the Z6 fixed
point for all the modes. Including the KK states, we will
have the 4-dimensional N = 4 supersymmetry and SU(5)
gauge symmetry in the bulk, the 4-dimensional N = 1 su-
persymmetry and SU(5) gauge symmetry on the 3-branes
at the Z3 fixed points, and the 4-dimensionalN = 4 super-
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symmetry and SU(3)×SU(2)×U(1) gauge symmetry on
the 3-branes at the Z2 fixed points. The standard model
fermions and Higgs fields can be on any 3-brane at one
of the fixed points. In particular, if we put the standard
model fermions and Higgs fields on the 3-brane at the Z6
fixed point, the extra dimensions can be large and the
gauge hierarchy problem can be solved because there is
no proton decay problem at all.

The phenomenology in those scenarios deserves further
study.
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