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Abstract. We study the supersymmetric GUT models in which the supersymmetry and GUT gauge sym-
metry can be broken by a discrete symmetry. First, with the ansatz that there exist discrete symmetries in
the branes’ neighborhoods, we discuss the general reflection Z» symmetries and GUT breaking on M* x M*
and M* x M' x M". In those models, the extra dimensions can be large and the KK states can be set
arbitrarily heavy. Second, considering that the extra space manifold is the annulus A? or the disc D?, we
can define any Z, symmetry and break any 6-dimensional N = 2 supersymmetric SU(M) models down
to the 4-dimensional N = 1 supersymmetric SU(3) x SU(2) x U(1)™~* models for the zero modes. In
particular, there might exist the interesting scenario on M* x A% where just a few KK states are light, while
the others are relatively heavy. Third, we discuss the complete global discrete symmetries on M* x T2 and

study the GUT breaking.

1 Introduction

Grand unified theory (GUT) gives us a simple and ele-
gant understanding of the quantum numbers of the quarks
and leptons, and the success of gauge coupling unification
in the minimal supersymmetric standard model strongly
supports this idea. The grand unified theory at a high en-
ergy scale has been widely accepted now, but there are
some problems in GUT: the grand unified gauge sym-
metry breaking mechanism, the doublet—triplet splitting
problem, the proton decay, etc.

As we know, one obvious approach to break GUT gauge
symmetry is the Higgs mechanism [1], which is discussed
extensively in phenomenology. Another approach is the
one of spin connection embedding, which is used in the
weakly coupled heterotic string Fg x Fg, and M-theory on
S1/Z5 [2]. Because the Calabi-Yau manifold has SU(3)
holonomy, the observable Fg gauge group can be broken
down to Eg by spin connection embedding. In addition,
the GUT gauge symmetry can be broken down to a low
energy subgroup by means of Wilson lines, provided that
the fundamental group of the extra space manifold or orb-
ifold is non-trivial [3].

Recently, a new scenario to explain the above questions
in GUT has been suggested by Kawamura [4-6], and fur-
ther discussed in a lot of papers [7,8]. The key point is that
the GUT gauge symmetry exists in 5 or higher dimensions
and is broken down to the 4-dimensional N = 1 super-
symmetric standard model like gauge symmetry for the
zero modes due to the discrete symmetries in the branes’
neighborhoods, which become the non-trivial orbifold pro-
jections on the multiplets and gauge generators in GUT.
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Therefore, we would like to call this the discrete symme-
try approach. Attractive models have been constructed
explicitly where the supersymmetric 5-dimensional and
6-dimensional GUT models are broken down to the 4-
dimensional N = 1 supersymmetric SU(3) x SU(2) x
U(1)"~3 model, where n is the rank of the GUT group,
through the compactification on various orbifolds. The
GUT gauge symmetry breaking and doublet—triplet split-
ting problems have been solved neatly by the orbifold pro-
jections, and other interesting phenomenology issues, like
1 problems, gauge coupling unifications, non-supersym-
metric GUT, gauge-Higgs unification, proton decay, etc.,
have also been discussed [7,8]. By the way, it seems to us
that this approach is similar to the Wilson line approach,
but it is not the same; for example, the fundamental group
of the extra space manifold can be trivial in the discrete
symmetry approach, and we may not break the supersym-
metry by a Wilson line approach.

On the other hand, large extra dimension scenarios
with branes have been a very interesting subject for the
past few years; in those models the gauge hierarchy prob-
lem can be solved because the physical volume of extra
dimensions may be very large and the higher dimensional
Planck scale might be low [9], or the metric for the ex-
tra dimensions has a warp factor [10]. Naively, one might
think the masses of the KK states are (3, n?/R?)'/2,
where R; is the radius of the ith extra dimension. How-
ever, it is shown that this is not true if one considers the
shape moduli [11] or the local discrete symmetry in the
brane neighborhood [12], and it may be possible to main-
tain the ratio (hierarchy) between the higher dimensional
Planck scale and 4-dimensional Planck scale while simul-
taneously making the KK states arbitrarily heavy. So a lot
of experimental bounds on the theories with large extra
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dimensions are relaxed. Moreover, the gauge symmetry
and supersymmetry can be broken if we consider the local
discrete symmetry [12].

In this paper, we study the supersymmetric GUT mod-

els where the supersymmetry and GUT gauge symmetry
can be broken by the discrete symmetries in the branes’
neighborhoods or on the extra space manifold. We require
that for the zero modes in the bulk, the supersymmetric
GUT models are broken down to the 4-dimensional N =1
supersymmetric SU(3) x SU(2) x U(1)"~3 model, and
above the GUT scale or including the zero modes and KK
modes, the bulk should preserve the original GUT gauge
symmetry and supersymmetries, i.e., we cannot project
out all the zero modes and KK modes of the fields in the
theories. In addition, we define two discrete symmetries
Z, and Z! to be equivalent if
(1) n=n';
(2) in order to satisfy our requirement, the representation
for the generator of Z,, in the adjoint representation of the
GUT group G must be the same as that for the generator
of Z!.

First, we would like to explore the general scenarios
in which the GUT gauge symmetry and supersymmetry
can be broken by the discrete symmetries in the brane
neighborhood, and the masses of the KK states can be set
arbitrarily heavy. Our ansatz is that there exist discrete
symmetries (local or global) in the special branes’ neigh-
borhoods, which become the additional constraints on the
KK states. The KK states which satisfy the discrete sym-
metries remain in the theories, while the KK states which
do not satisfy the discrete symmetries are projected out.
Therefore, we can construct the theories with only zero
modes for all the KK modes having been projected out,
or the theories which have large extra dimensions and ar-
bitrarily heavy KK modes, because there is no simple rela-
tion between the mass scales of the extra dimensions and
the masses of the KK states. In addition, the bulk gauge
symmetry and supersymmetry can be broken on the spe-
cial branes for the zero and KK modes, and in the bulk for
the zero modes by local and global discrete symmetries.

(I) We generalize our previous models [12] to the models
on the space-time M* x S' and M* x I', where the M*
is the 4-dimensional Minkowski space-time. We point out
that the general models on M* x I' can be obtained from
the general models on M* x S' by moduloing the (Z,)*o
symmetry in which kg is a positive integer. Moreover, we
find that, to satisfy our ansatz and requirement, there
are at most two non-equivalent Z, symmetries, which can
be local or global. Therefore, we can only discuss the
5-dimensional N = 1 supersymmetric SU(5) model. In
this scenario, the bulk 4-dimensional N = 2 supersym-
metry and SU(5) gauge symmetry are broken down to
the 4-dimensional N = 1 supersymmetry and SU(3) x
SU(2) x U(1) gauge symmetry on the special brane with
GUT breaking Z, symmetry for all the modes, and in
the bulk for the zero modes. The 3-branes preserve half
of the bulk supersymmetry. Moreover, the masses of the
KK states can be set arbitrarily heavy although the phys-
ical size of the fifth dimension can be large, even in the
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millimeter range. By the way, one can also discuss the
non-supersymmetric SU(6) and SO(10) breaking; how-
ever, there are zero modes for A% where @ is the index
related to the broken gauge generators under two non-
equivalent Z, projections.

(IT) We study the models on the space-time M*x M1 x M*
where M can be S, S'/Z,, and I'. Because the extra
space manifold is the product of two 1-dimensional man-
ifold and the discussions are similar, as representatives,
we discuss the models on the space-times M* x S x S!
in which there are parallel 4-branes with Z symmetry
along the fifth and sixth dimensions, and there are at
most four non-equivalent Zs symmetries. We also discuss
the models on the space-time M* x S'/Z, x S'/Z, where
there are only four 4-branes at the boundaries and some 3-
branes in the bulk, and there are three non-equivalent Zo
symmetries. In those models, the extra dimensions can be
large and the masses of the KK states can be set arbitrar-
ily heavy. The 6-dimensional non-supersymmetric GUT
models and N = 1 supersymmetric GUT models can be
considered as special cases of the N = 2 supersymmetric
GUT models, so we discuss the 6-dimensional N = 2 su-
persymmetric GUT models. Because N = 2 6-dimensional
supersymmetric theory has 16 real supercharges, which
corresponds to N = 4 4-dimensional supersymmetric the-
ory, we cannot have hypermultiplets in the bulk, and we
have to put the standard model fermions on the brane.
As representatives, we discuss the 6-dimensional N = 2
supersymmetric SU(6) and SO(10) models on the space-
time M* x S x S', and the 6-dimensional N = 2 su-
persymmetric SU(6) models with gauge-Higgs unifica-
tion on the space-time M* x S'/Zy x S'/Z,. For the
zero modes, the bulk 4-dimensional N = 4 supersym-
metry and SU(6) or SO(10) gauge symmetry are broken
down to the 4-dimensional N = 1 supersymmetry and
SU(3) x SU(2) x U(1)? gauge symmetry.

Second, we discuss the models where the extra space
manifold is the disc D? or the annulus A2. In this kind of
scenarios, we can naturally use complex coordinates and
introduce global Z,, symmetry for any positive integer n,
so we can break any SU(M) gauge symmetry for M > 5
down to the SU(3) x SU(2) x U(1)M~* gauge symme-
try. Similar to the above, we only study the 6-dimensional
N = 2 supersymmetric GUT models with the standard
model fermions on the boundary 4-branes or on the 3-
brane at the origin if the extra space manifold is the disc
D?. There are 4-dimensional N = 1 supersymmetry and
SU(3) x SU(2) x U(1)M~=* gauge symmetry in the bulk
and on the 4-branes for the zero modes, and on the 3-
brane at the origin in the disc D? scenario. Including all
the KK states, we will have 4-dimensional N = 4 super-
symmetry and SU (M) gauge symmetry in the bulk and on
the 4-branes. By the way, if we put the standard model
fermions on the 3-brane at the origin, the extra dimen-
sions can be large and the gauge hierarchy problem can
be solved, for there does not exist a proton decay problem
at all. As an example, we discuss the 6-dimensional N = 2
supersymmetric SU(6) model on M*x A2 or M*x D? with
Zo symmetry. Moreover, if the extra space manifold is the
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annulus A2, for suitable choices of the inner radius and
outer radius we might construct the models where only
a few KK states are light, and the other KK states are
relatively heavy due to the boundary condition on the in-
ner and outer boundaries, so we might produce the light
KK states of gauge fields at future colliders, which is very
interesting in collider physics.

In addition, if the extra space manifold is a sector of
D? or a segment of A%, we point out that the masses of
the KK states can be set arbitrarily heavy if the range of
the angle is small enough. However, we cannot define the
discrete symmetry Z,, for n > 2 on a sector of D? or a
segment of A2, so it is not interesting for us to discuss the
supersymmetric GUT breaking in this case.

Third, we discuss the complete global discrete symme-
try on the space-time M* x T2. We prove that the possible
global discrete symmetries on the torus is Zs, Z3, Z4, and
Zg. We also discuss the 6-dimensional N = 2 supersym-
metric SU(5) models on the space-time M?* x T2 with
Zg symmetry, where the standard model fermions on the
observable 3-brane at one of the fixed points. There are
4-dimensional N = 1 supersymmetry and standard model
gauge symmetry in the bulk for the zero modes, and on the
3-brane at the Zg fixed point for all the modes. Including
the KK states, we will have the 4-dimensional N = 4 su-
persymmetry and SU(5) gauge symmetry in the bulk, the
4-dimensional N = 1 supersymmetry and SU(5) gauge
symmetry on the 3-branes at the Z3 fixed points, and
the 4-dimensional N = 4 supersymmetry and SU(3) x
SU(2) x U(1) gauge symmetry on the 3-branes at the Zs
fixed points. The standard model fermions and Higgs fields
can be on any 3-brane at one of the fixed points. In par-
ticular, if we put the standard model fermions and Higgs
fields on the 3-brane at the Zg fixed point, the extra di-
mensions can be large and the gauge hierarchy problem
can be solved because there is no proton decay problem
at all.

This paper is organized as follows: in Sect.2 we dis-
cuss the discrete symmetry in the brane neighborhood in
general. We study the discrete symmetry on the space-
time M* x MY, M* x M' x M, M* x A2, M* x T? in
Sects. 3, 5, 7, 9, respectively. Next, we discuss the super-
symmetric GUT breaking on the space-time M?* x M?!,
M* x M x MY, M* x A%, M* x T? in Sects. 4, 6, 8, 10,
respectively. Our discussion and conclusions are given in
Sect. 11.

2 Discrete symmetry
in the brane neighborhood

We assume that in a (4 + n)-dimensional space-time man-
ifold M* x M™ where M* is the 4-dimensional Minkowski
space-time and M™ is the manifold for extra space dimen-
sions, there exist some topological defects; we call them
branes for simplicity. The special branes which we are
interested in have co-dimension one or highter. Assum-
ing we have K special branes and using the Ith special
brane as a representative, our ansatz is that in the open
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neighborhood M* x Uy (Uy € M™) of the Ith special
brane, there is a global or local discete symmetry!, which
forms a discrete group Iy, where I = 1,2,--- K. The
Lagrangian is invariant under the discrete symmetries. In
addition, we require that above the GUT scale or includ-
ing all the KK states, the bulk should preserve the origi-
nal GUT gauge symmetries and supersymmetries, i.e., we
cannot project out all the KK states of the fields in the
theories, and the supersymmetric GUT models are bro-
ken down to the 4-dimensional N = 1 supersymmetric
SU(3) x SU(2) x U(1)"~3 model in the bulk for the zero
modes.

Assuming that the local coordinates for extra dimen-
sions in the Ith special brane neighborhood are y}, y?,
-+, Y7, the action of any element v/ C I'y on U; can be
expressed as

7y?) CUI
772’1y?)CU1a (1)

where the Ith special brane position is the only fixed
point, line, or hypersurface for the whole group I'; as long
as the neighborhood is small enough.

The Lagrangian is invariant under the discrete symme-
try in the neighborhood M* x U; of the Ith special brane,
i.e., for any element 7/ C Iy

v (Yl
— (Yl vivi,

1) (2)

where (y},y%,--+,y7) C Us. So, for a generic bulk multi-
plet @ which fills a representation of the bulk gauge group
G, we have

L Ayt iyt viyp) = Lyl 3,

I I 2 I
Oz v yr iyl iyt

= né(Rvg)léé(x‘uvy}vy%f” 7y?)(R_1)m¢a (3)

e

where 77415 is an element of the discrete symmetry and can
be determined from the Lagrangian (up to an element in
I'y for the matter fields), I and me are the non-negative
integers determined by the representation of @ under the
gauge group G. Moreover, R%g is an element in G, and
Rp, is a discrete subgroup of G. We will choose R,r as the

matrix representation for %I in the adjoint representation
of the gauge group G. The consistent condition for R,; is

R%{R%{ = R%{A{]{, V’}/{, ’}/JI cIy. (4)

Mathematical speaking, the map R : I} — Rp, C
G is a homomorphism. Because the special branes are
fixed under the discrete symmetry transformations, the
gauge group on the Ith special brane is the subgroup of G
which commutes with R, , and we denote the subgroup by
G/Rp,. For the zero modes, the bulk gauge group is bro-
ken down to the subgroup of G which commutes with all

! Global discrete symmetry is a “special” case of local dis-
crete symmetry. The key difference is that the space-time man-
ifold can modulo the global discrete symmetry and become a
quotient space-time manifold or orbifold
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Rr,,ie, Rr,, Rr,, -, Rr,, and we denote the subgroup
by G/{Rr,,Rr,, -+, Rry}. In addition, if the theory is
supersymmetric, the special branes will preserve part of
the bulk supersymmetry, and the zero modes in the bulk
also preserve part of the supersymmetry; in other words,
the supersymmetry can be broken on the special branes
for all the modes, and in the bulk for the zero modes.

In addition, we only have the KK states which satisfy
the local and global discrete symmetries in the theories
because the KK modes, which do not satisfy the local
and global discrete symmetries, are projected out under
our ansatz. Therefore, we can construct the theories with
only zero modes because all the KK modes are projected
out, or the theories which have large extra dimensions
and arbitrarily heavy KK states for there is no simple
relation between the mass scales of the extra dimensions
and the masses of the KK states. By the way, we are only
interested in the second kind of scenarios.

3 Discrete symmetry
on the space-time M* x M*

We would like to generalize our previous models [12] to
the models on the space-time M* x ST, and M* x I''. We
find that the general models on M* x I' can be obtained
from the general models on M* x S' by moduloing the
(Z3)*0 symmetry in which kg is the positive integer. The
models on M* x S1/(Zy x Z5) [13] are the special case for
ko = 2 and no 3-branes in the bulk.

We assume that the corresponding coordinates for the
space-time are z# (u = 0,1,2,3), y = 2°, the radius for
the circle S' is R, and the length for the interval I' is 7R.
We also assume that there are some special 3-branes along
the fifth dimension, and there is a Z5 reflection symmetry
in each 3-brane neighborhood.

3.1 Discrete symmetry on M* x S1

Assuming we have n+1 parallel 3-branes along the S!, and
their fifth coordinates are yg =0 < y; < yo < -+ < Yp <
2n R, we define the local fifth coordinate for the ith brane
Yy, = y — vyi, and then, y), = y. In addition, the equiva-
lence class for the reflection Z5 symmetry in the ith brane
beighborhood is y, ~ —y,. For that Z; symmetry, we de-
fine the corresponding Z5 operator P; fori =0,1,2,---,n,
whose eigenvalue is +1, i.e., for a generic field or function,
we have

Pig(a",y;) = £ (2", y;). (5)

By the way, P? = 1, so {1,P,} forms a Z group. If
y;/(27R) is an irrational number, we will project out all
the KK states, which cannot satisfy our requirement. So,
we assume

= &271-37

qi

fori=1,2,---,n, (6)

where p; and ¢; are relative prime positive integers.
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Let us assume that L is the least common multiple for
all p; + q;, i.e.,

L=pi+aq,p2+a6, - ,pn+ anl (7

By the unique prime factorization theorem, we obtain

L= Qkoslfls’;? e s]?j, (8)

J

where 2 < 51 < 59 < --- < 85, ko is a non-negative inte-
ger, s; is a prime number and k; is a positive integer for

1 =1,2,---,7. Moreover, we define the effective physical
radius 7 by
4R/L  for kg > 2,
r=4¢ 2R/L for ko =1, (9)
R/L for kg = 0.

For a generic bulk field ¢, we obtain the KK modes ex-
pansions

(2") I 2ny 1
¢++ Z\/m (1‘ )COS r (O)
“ (2n+1) (2n+ 1)y 11
) ZF+_ () cos ZEDY ()
M (2n+1 BN o (2n + l)y 12
(z",y) Z (") sin — (12)
n . (2 2
b (" y) = @) ey sin P EDY (g

%F

where n is a non-negative integer. The 4-dimensional fields
¢(2n ¢(2n+1), ¢ @ntD) and ¢(_2f+2) acquire masses 2n,/r,
(2n + 1)/r (2n+ 1)/r and (2n + 2)/r upon the compacti-
fication. Zero modes are contained only in the ¢, fields;
thus, the matter content of massless sector is smaller than
that of the full 5-dimensional multiplet. Moreover, because
0 < r < R, the masses of the KK states (n/r) can be set
arbitrarily heavy if L is large enough, i.e., we choose suit-
able p; and ¢; for some i; for example, if 1/R is about
TeV, p; = 10" — 1 and ¢; = 10*® + 1, we obtain that 1/r
is at least about 106 GeV, which is the usual GUT scale.
Therefore, there is no simple relation between the physical
size of the fifth dimension and the mass scales of the KK
modes.
For kg = 0 and kg = 1, we obtain

Pid)—i-:l: (x#a y) - ¢+:|: (xll, y)v
Pig_y(a",y) = —p—4(z",y),

for all ¢ = 0,1,2,---,n. So, we only have one non-equiv-
alent Z5 symmetry. For ¢ = 0, we always have the above
equations for Fy.

For ko > 2, if (p; +¢;) is a multiple of 2% i.e., 2%0|(p; +
¢:), we obtain

(14)
(15)

Pi¢i+(x#7 y) =
Pidji—(xll)y) =

qsi-l—(x#a y)v
_¢i— (xll7 y)7
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and if (p; + ¢;) is not a multiple of 2% i.e., 250 J(p; + q;),
we obtain

Pidj-‘r:t(xﬂvy) = ¢+:‘:(x“ay>7
Pip_y (2", y) = =+ (2", y).

So we have two non-equivalent Z, symmetries.

Because we need a discrete symmetry to break the bulk
gauge symmetry and supersymmetry, we will concentrate
on the scenario with ky > 2. To be explicit, we would like
to give two examples:

(I) n =1 and 4|(p1 + ¢1). In this simple case, we can have
two local Zs symmetries.

(IT) Suppose n = 3, 4|(p1 + q1), p2 = g2 = 1, p3 = q1, and
q3 = p1, we have one global Z5 symmetry and one local
Zy symmetry. The local Z; symmetry will become global
if p1 =1 and ¢; = 3. This is the scenario discussed in [12]
where the global Z; symmetry has been moduloed from
the manifold.

Furthermore, if we require that the models have one
global Zs symmetry, then modulo this global Z5 symme-
try we obtain the models with discrete symmetry on the
space-time M* x S1/Z,. The two Z, symmetries in the two
boundary 3-branes’ neighborhoods are equivalent. Let us
explain this in detail: suppose we have 2n + 2 special 3-
branes. We require that yo =0, yp4+1 = ™R, p; = @ant2—i
and ¢; = pant2—i, where ¢ = 1,2,--- n; we will then have
one global Z5 symmetry in which the equivalence class is
y ~ —y. Moduloing this equivalence class, we obtain the
models on M* x S1/Z,.

In general, if we require that the models have global
(Z3)*0 symmetry for ky > 1, then modulo the global
(Z3)ko symmetry, we obtain the models with discrete sym-
metry on the space-times M* x S'/(Zy)*0. The two Z,
symmetries in the two boundary 3-branes’ neighborhoods
are not equivalent. As an example, we discuss the models
with kg = 2. Suppose we have 4n + 4 3-branes, y,+1 =
TR/2, yonto = TR, ysp+s = 3rR/2. Fori =1,2,-- - n, we
have p; = qunt4—i, G = Panva—i, Panyo—i = Pé, Qon+2—i =
4}y Panta+i = 4by Gantori = P, where p; and ¢} are relative
prime positive integer and satisfy the equation

(18)
(19)

g;: 4i — Di
q  2(pi +q)

If n = 0, we obtain the models on M* x S/(Zy x Z}) [13].

(20)

3.2 Discrete symmetry on M* x I'!

In this subsection, we would like to consider the discrete
symmetry on the space-time M?* x I'. Assuming that
on two boundary 3-branes, the fields should satisfy the
Dirichlet or Neumann boundary condition, we show that
the general models on the space-time M* x I' contain the
models on M* x S1/Z, and the models on M* x St /(Zy)*o
for kg > 1. We assume that we have n + 2 parallel 3-
branes along the I', and that their fifth coordinates are
Yo =0 < y1 < yo < -+ < Ypp1 = wR. We define the
local fifth coordinate for the ith brane by y; = y — y;. The
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equivalent class for the reflection Z5 symmetry in the ith
brane neighborhood is y; ~ —y}. Moreover, for that Z,
symmetry, we define the corresponding Zs operator P; for
1=20,1,2,---,n, whose eigenvalue is £1; i.e., for a generic
field or function, we have

Pip(at,y;) = (2", ;).

Because if y;/(7R) is an irrational number we will
project out all the KK states, which cannot satisfy our
requirement. So, we assume

(21)

yi:&wR, fori=1,2,---,n, (22)

i
where p; and ¢; are relative prime positive integers.
Assume L is the least common multiple for all p; + g;,
ie.,
(23)

L=pi+aq,p2+q, - ,pn+ aqnl

By the unique prime factorization theorem, we obtain

L
57,

L=2bshsk. .. (24)
where 2 < 51 < 59 < --- < 55, lp is a non-negative integer,
s; is a prime number and I; is a positive integer for i =
1,2,---,j. For the models on the space-time M* x S1/Z,,

we define the effective physical radius r by
) 2R/L

| R/L
For [y = 0, we can still define the effective radius by

2R

for lo > 1,

25
for Iy = 0. (25)

This kind of models cannot be obtained from the models in
the last subsection by moduloing one global Z; symmetry;
however, they can be obtained from the models in the last
subesection by moduloing global (Z3)* symmetries for
ko > 1.

For a generic bulk field ¢, we obtain the KK modes
expansions

bes(a,9) ZO e ()
bo—(oh,y) = fj j— ) ) cos BEDY )
b () = Z D s (2
__(aMy) = 2"*2( “)sinw, (30)

where 7 is a non-negative integer. The 4-dimensional fields
¢(2"), ¢(2n+1) (;S(_Q_T_H) and gb(_2f+2) acquire masses 2n/r,
(2n + 1)/7" (2n41)/r and (2n + 2)/r upon the compact-
ification. The zero modes are contained only in the ¢4
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fields. Moreover, because 0 < r < R, the masses of the
KK states (n/r) can be set arbitrarily heavy if L is large
enough, i.e., we choose suitable p; and g;, for some i. So
there is no simple relation between the physical size of the
fifth dimension and the mass scales of KK states.

(I) First, we discuss the models on the space-times M* x
S1/Z5. We should keep in mind that there is one global
Z, symmetry that has been moduloed from S*, and which
we can call Py or P,41.

For Iy = 0, we obtain

Pi¢+:t($uay) = ¢+:ﬁ:(l’“ay)7
]Diqs—:t(xp"y) = 7¢—:‘:(1‘Hay)7

for all © = 1,2,---,n. Under our assumption, these Z,
symmetries are equivalent to the global Z; symmetry, so
we just have one independent Z5 symmetry.

For Iy > 1, if (p; +¢;) is a multiple of 2, i.e., 2 |(p; +
qi), we obtain

P’i¢:|:+(xu7y) = ¢i+(xu7y)v
Pid):t* (1.”7 y) = _d):i:* (xﬂ7 y)a
this Z5 symmetry is not equivalent to the global symme-

try. If (p; + ¢;) is not a multiple of 2%, i.e., 2! f(p; + q;),
we obtain

(31)
(32)

Pidj-‘r:t(xﬂvy) = ¢+i(xﬂay>7
Pi(b—i(x#a y) = _Qs—i(x#ay%

this Zs symmetry is equivalent to the global Z5 symme-
try. In short, we have two independent Zs symmetries, in
which one can be considered as a global Z; symmetry.

Because we need a discrete symmetry to break the bulk
gauge symmetry and supersymmetry, we will concentrate
on the scenario with Iy > 1. To be explicit, we would like
to give one example: n = 1 and 2|(p1 + ¢1)- In this simple
case, we can have one local Z5 symmetries and one global
Z5 symmetry. That local Zs symmetry becomes global if
p1=q =1
(IT) If lp = 0 and r = 2R/L, this kind of models can
be obtained from the models in the last subsection by
moduloing the global (Z3)* symmetries for kg > 1, so,
Py and P, ;1 are two non-equivalent Zs symmetries. If at
the starting point, the original extra space manifold is I*,
we can consider that there are no global Zs symmetries
for Py and P41

Because [y = 0, there are two cases: p; is odd and g; is
even, or p; is even and ¢; is odd. If p; is even,

Pi¢+:t(xu7y) = ¢+:ﬁ:(xu7y)v (37)
Pid)f:t(l'uay) = _d)*:t(xuvy)» (38)
and if p; is odd
Pi¢:|:+(muvy) = ¢:|:+(xuay)v (39)
]Di(b:t—(xuay) = 7¢:‘:—(xu7y)' (40)

Therefore, we can have two local Z5 symmetries, which
can be thought of as global symmetries if we consider the
original manifold for the extra dimension to be S*.

T. Li: Discrete symmetry and GUT breaking

4 GUT breaking on the space-time M* x M?

In this section, we would like to discuss the supersymmet-
ric SU(5) model on the space-time M* x M' with two
discrete Zo symmetries. We assume that there are SU(5)
gauge fields and two 5-plet Higgs hypermultiplets in the
bulk, and the standard model fermions can be on the 3-
brane or in the bulk.

As we know, the N = 1 supersymmetric theory in
5-dimension have 8 real supercharges, corresponding to
N = 2 supersymmetry in 4-dimension. The vector multi-
plet physically contains a vector boson Aj; where M =
0,1,2,3,5, two Weyl gauginos \; 2, and a real scalar o.
In terms of 4-dimensional N = 1 language, it contains a
vector multiplet V/(A,, A1) and a chiral multiplet X'((o +
iA5)/2'/2 Xy) which transform in the adjoint represen-
tation of SU(5). And the 5-dimensional hypermultiplet
physically has two complex scalars ¢ and ¢°, a Dirac
fermion ¥, and can be decomposed into two 4-dimensional
chiral multiplets ®(¢, 1 = ¥r) and $°(¢°, )¢ = ¥1,), which
transform as conjugate representations of each other under
the gauge group. For instance, we have two Higgs chiral
multiplets H, and Hg, which transform as 5 and 5 un-
der the SU(5) gauge symmetry, and their mirror HS and
HS, which transform as 5 and 5 under the SU(5) gauge
Symimetry.

The general action for the SU(5) gauge fields and their
couplings to the bulk hypermultiplet & is [14]

1
_ 5

1
Z/dQH(WaWa +H.C))

+ /d49<(\/§35 + X)e YV (=v205 + X)e"
+ 856‘/65(3‘/)]

+ [ [ [ @era o va)

+ /d20 <¢C <a5 - \22) D+ Hc)] . (41)

Because the action is invariant under the parity P;, we
find that under the parity operator P; the vector multiplet
transforms as

V(xﬂ,y;) — V(x#’ _y;) = ]Div('ruvyz/')Pi_la (42)
L@t y) = 2", —yl) = P2 (", y) Pt (43)

if the hypermultiplet @ is a 5 or 5 SU(5) multiplet, we
have

¢($M7yg) - ¢($M7 _y;) = 7795Pi¢(xuvy£)ﬂ
(!, yp) — (2, —y;) = —na B0 (2", y;),

(44)
(45)

and if the hypermultiplet @ is a 10 or 10 SU(5) multiplet,
we have

(2t y)) = d(at, —yl) = nePd(a",y,) P, (46)
Pzt y)) — (2, —y}) = —ne P (a", y)) P, (47)
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Table 1. Parity assignment and masses (n > 0) of the fields
in the SU(5) gauge and Higgs multiplets. The indices F', T" are
for doublet and triplet, respectively

(P, P Field Mass
(+,+) Vi Hy, Hy %

(+-) Vi Hy Hj =
(_7+) 2&3 H5T7 HST %
(777) Eaa H5F7 H;F 2717:‘1»2

where ng = £1.

For simplicity, let us denote the two non-equivalent Z,
symmetries by P and P’. We choose the following ma-
trix representations for the parities P and P’ which are
expressed in the adjoint representaion of SU(5)

P = diag(+1,+1,+1,+1,+1),
P' = diag(—1, -1, —1,+1, +1). (48)
So, upon using the parity P’, the gauge generators T
where A = 1,2,---,24 for SU(5) are separated into two
sets: T are the gauge generators for the standard model
gauge group, and T“ are the other broken gauge genera-
tors

PT*P~!t =19,

PT P~ =T%, (49)

PrepP Tt =1 P'T'P Tl =-T"  (50)

Choosing ng, = +1 and ng, = +1, we obtain the
particle spectra, which are given in Table 1. The bulk 4-
dimensional N = 2 supersymmetry and SU(5) gauge sym-
metry are broken down to the 4-dimensional N = 1 super-
symmetry and SU(3) x SU(2) x U(1) gauge symmetry in
the bulk for the zero modes, and on the special 3-branes
which preserve Z5 symmetry P’ for all the modes. Includ-
ing the KK states, the gauge symmetry on the special
3-branes which preserve the Z symmetry P, is SU(5).
In addition, the 4-dimensional supersymmetry on the 3-
branes is 1/2 of the bulk 4-dimensional supersymmetry or
N = 1 due to the Z; symmetry in the brane neighbor-
hood. Moreover, the standard model fermions can be in
the bulk or on the 3-brane, and the discussions are similar
to those in [4-8], so we will not repeat them here.

By the way, one can also discuss the non-supersymmet-
ric SU(6) and SO(10) breaking; however, there are zero
modes for A2 where a is the index related to the broken

gauge generators under two Zs symmetries.

5 Discrete symmetry
on the space-time M* x M*' x M*

We would like to discuss the models where there are some
parallel 4-branes with Z, reflection symmetry along the
fifth and sixth dimensions on the space-time M* x M x
M1, in which M! can be S, S1/Z,, and I'. Because the
extra space manifold is the product of two 1-dimensional
manifolds, we only discuss the models on the space-times
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M?* x S x 8! as a representative because the discus-
sions of the models with other combinations are simi-
lar. In addition, we discuss the models on the space-time
M* x S1/Zy x St /Z, where there are some 3-branes with
Z5 symmetry in the bulk.

The corresponding coordinates for the space-time are
a#, (u=0,1,2,3) y = 2°, 2 = 2%, and the radii for the y
and z directions are R; and Ry, respectively.

5.1 Discrete symmetry on M* x S x S?!

First, we would like to discuss the discrete symmetry on
the space-time M* x S! x S'. Assume that along the y
and z directions, we have n + 1 and m + 1 parallel 4-
branes with Z5 reflection symmetry, respectively. The 5th
coordinates for the parallel 4-branes along the y direction
are yp = 0 < y1 < y2 < -+ < yp < 2mR;, and the 6th
coordinates for the parallel 4-branes along the z direction
are 20 =0< 21 < 20 < -+ < 2z, < 2WRs.

We denote the local coordinate for the ith 4-brane
along the y direction by y; = y — y;. In addition, for the
Zo symmetry in the ith 4-brane neighborhood, we define
a Zo operator P! for i =0,1,2,---,n, whose eigenvalue is
+1, i.e., for a generic field or function, we have

Plo(a", y;, z) = £(a", yj, 2).

Similarly, we denote the local coordinate for the ith
4-brane along the z direction by z; = z — z;. For the Z5
symmetry in the ith 4-brane neighborhood, we define a
Zy operator P? for i =0,1,2,---,m:

Piz(b(.r“, Y, Z:) = i¢($“’ Y, Z;)

Because if y; /(2 R1) or z; /(27 Ry) is an irrational num-
ber, we will project out all the KK states, which cannot
satisfy our requirement. So we assume

(51)

(52)

pY
yi="32rRy, fori=1,2n, (53)
q,

(2

Zi :p—i27TR27 fOri:172,"’7m7 (54)

2

where p! and ¢! are relative prime positive integers, and
p; and g7 are relative prime positive integers.

Let us assume that L, is the least common multiple
for all p! +¢/, and L, is the least common multiple for all
p; +4q;,le.,

(55)
(56)

Ly=p+¢,05+d4,--,p% + ¢,
L.=[pi+ ¢ 05+ 6, - pi + a5

By the unique prime factorization theorem, we find
that

u

L, =2t gl

_ ok k1 k2 ku
Ly = 257" s5% - 53",

Wher62<51<52<"‘<Su,2<t1<t2<"'<tv7k0
and [y are non-negative integers, s; and ¢; are prime num-
bers, and k; and [; are positive integers for i =1,2,---,u
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and j = 1,2,---,v. We define the effective physical radii
r1 and ro by
4R1/Ly for ko Z 2,
rn = 2R1/Ly for ko = 1, (59)
R/L, for kg =0,
4R1/Lz for lo Z 2,
ro = 2R1/Lz for l() = 1, (60)
Ry/L, for Ip = 0.

For a generic bulk field ¢, we obtain the KK modes
expansions

¢>++++(x”,y, z) (61)
=33 G ) A () A 1),
n=0m=0
¢>+++ (v “,y, 2) (62)
= Z Z oD () A (y, 1) AT (2,1m2),
n=0m=0
¢++ +(7 nyv 2) (63)
3D I A (5. r) A ),
n=0m=0
¢++ *( ,u,7y, ) (64)
= Z Z pELZD (@) AT (y,71) AP (2, 7),
n=0m=0
GOy ++( “,y, z) (65)
= Z Z pE L™ (2t AT (y, 1) AT (2,m2),
n=0m=0
¢+ + ( #aya ) (66)
> G ) Ay, AT ),
=0m=0
¢+——+( #aya ) (67)
- Z Z (z)(fftifm-‘rl )A2n+1( 77’1)A2fi+1(27r2)7
n=0m=0
¢+———( #7y7 ) (68)
3D A () g2y 1) AT )
n=0m=0
b +++( ”72/7 z) (69)
S G () A2 g, ) A (2, ),
n=0m=0
P—ty—(z Haya z) (70)
o Z Z ¢ 2n+1 2m+1) “)A%HJ:FI(Z%Tl)AinZJrl(Z,Tz),
n=0m=0
Oy +( ”72/, z) (71)

) A2 (y, ) A2 (2, ma),

o Z Z ¢ 2n+1 2m+1

n=0m=0

T. Li: Discrete symmetry and GUT breaking

d) -‘r——( #7y’ ) (72)
- Z Z ¢(2n+1 2m+2) )A%njl(y,rl)Agni+2(Z,T'2),
n=0m=0
o4 (2", y, 2) (73)
= 303 PRI @ AR (g, ) AT (2, ),
n=0m=0
¢——+ ( H7y’ ) (74)
SIS R () g2y, ) AT (),
n=0m=0
¢__—+( ",y, z) (75)
=YD G () AR ) AT ),
n=0m=0
42577”( “,y, z) (76)
= Z Z LRI (i) A2 (y, 1) AP (2, my),
n=0m=0
where
1 2ny
AT (y, 1) = —(—=cos —, (77)
A v 26”=07TR1 T1
1 oty
APy , 78
Py, ) = F o (78)
1 (2n+1)y
A (y,r : 79
Yy, ) = F o (79)
. 1 on + 2
A2y ) = i Z1E2V (g

Jem

Similarly, we define A% (z,72), Ai”fl(,a r9), Aszl(z7
o), A2 (2, 1y).

The 4-dimensional fields ¢(™™) acquire masses (n?/
r24+m?/r3)*/? upon the compactification. The zero modes
are contained only in the ¢, | fields. Moreover, because
0<r;y <Rjand 0 < ry < Ry, the masses of the KK states
((n?/r} +m?/r3)1/?) can be set arbitrarily heavy if L,
and L, are large enough, i.e., we choose suitable (p?,¢?)
for some i, and (pj,qj) for some j. So there is no simple
relation between the physical size of the extra dimensions
and the mass scales of KK modes.

For kg = 0 and kg = 1, we obtain

Ployiiy(x
PY¢_si(x

forall t =0,1,2,---,n. So we only have one independent
Z5 symmetry. For ¢ = 0, we always have the above equa-
tions for Py.

Moreover, for ko > 2, if (p? + ¢?) is a multiple of 2%,
i.e., 2%|(pY + g/), we obtain

(81)
(82)

HJ Y, Z) = ¢+:t:t:|:(‘ru7 Y, Z)7
Na Y, Z) = _¢7:|::|::|:(xuv Y, Z)v

Ployiis(x
Ploy_yi(x

(83)
(84)

”,y,z) = ¢i+ii($“7yaz)7
#73/72) = _¢i—ii(x#7y7z)7
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and if (p! +¢7) is not a multiple of 2% i.e., 2k J(p
we obtain

Ploiiii(at,y,z) = pyats(ah,y, 2),
Piyd)*:t:t:t(xuv Y, Z) = _(i)*:l::l::t(xua Y, Z)

! +4)),

(85)
(86)

So we have two non-equivalent Zs symmetries along the y
direction.
Similarly, for [y = 0 and [y = 1, we obtain

Pioiiii(x
Pipis 4 (x

for all i = 0,1,2,---,m. So we only have one indepen-
dent Zs symmetry. For ¢ = 0, we always have the above
equations for Fy.

For Iy > 2, if (p? +¢7) is a multiple of 20, i.e., 2! |(p? +
q7?), we obtain

Piz¢iii+(m#7 Y, Z) = ¢iii+ (1'#’ Y, Z)a
Piz¢iii—(m#7 Y, Z) = _¢iii—(x'u7 Y, Z)7

and if (p? + ¢7) is not a multiple of 20, i.e., 210 J(p? + ¢7)
we obtain

Pioisit(x
Pipis 4 (x

So we have two non-equivalent Z symmetries along the z
direction.

Therefore, we can have at most four non-equivalent
Zs symmetries. Because we need a discrete symmetry to
break the bulk gauge symmetry and supersymmetry, we
will concentrate on the scenario with kg > 2 and [y > 2.
To be explicit, we would like to give two examples.

(D n=1,m=1, 4+ q}), 4/(p + ¢f). In this simple
case, we can have four local Z; symmetries.

(IT) Suppose n = 3, m = 3, 4|(pY + ¢¥), 4|(pF + ¢f), P =
9 =1,p5 =45 =1,p5 = qi, 45 = pi, P = qi, and g =
p7. Now we will have two global Zs symmetries and two
local Z5 symmetries. The local Z5 symmetry will become
global if p{ = 1 and ¢f = 3, or pj = 1 and ¢} = 3.
The two global Z5 symmetries can be moduloed from the
manifold. In general, we may have global (Z)* and (Z,)%
symmetries; the extra space orbifold will be S*/(Z2)* x
St /(Zy)b if we modulo those global Z; symmetries.

(87)
(88)

Mv Y, Z) = ¢:|::|:+:t($uv Y, Z)v
M, Y, Z) = 7¢:ﬁ::ﬁ:—:ﬁ:(xuv Y, Z)v

(89)
(90)

(91)
(92)

N’y7z) = ¢:|::|:+:t(xu7yaz>7
Mayvz) = _(b:‘::‘:*:‘:(xuvyvz)'

5.2 Discrete symmetry on M* x S'/Zy x S'/Z,

In this subsection, we would like to discuss the discrete
symmetry on the space-time M* x S'/Z, x S'/Z,, where
there are some 3-branes with Z; symmetry in the bulk.
And we denote two global Zy symmtries y ~ —y and z ~
—z as PY and P?. For simplicity, we assume that there
are only four 4-branes which are the boundary branes on
SY/Zy x S/ Zy, and the 3-branes are only in the bulk.
Suppose we have n 3-branes in the bulk, and their
coodinates are (y;,2;) where 0 < y; < 7Ry and 0 < z; <
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mR2. We denote the local coordinates for the ith 3-brane
by ¥} =y — y;, and 2z} = z — z;. Then the equivalent class
for the reflection Zs symmetry in the ith 3-brane neigh-
borhood is (y}, z}) ~ (—yj, —z}). For that Z; symmetry, we
define the corresponding Z, operator P; fori=1,2,---,n,
whose eigenvalue is 1, i.e., for a generic field or function;
we have

Pz(b(mu = :I:gb(ac“,y;,z;)

Because if y; /(2 R1) or z; /(27 Ry) is an irrational num-
ber, we will project out all the KK states, which cannot
satisfy our requirement. So we assume

) (93)

vy

Yi = — 7TR17

’L

p%WRQa

%

fort=1,2,---,nm, (94)

fori=1,2,--+,m, (95)

Z; =

where p! and ¢/ are relative prime positive integers, and
p; and ¢7 are relative prime positive integers.

Assume L, is the least common multiple for all p! +¢/,
and L, is the least common multiple for all p? + ¢7, i.e.,

DY+ qyl,
s P+ Q-

Ly=[p! +aqf,p5 + 45, -
L.=[pi+d¢,p5+4¢,

By the unique prime factorization theorem, we obtain

L,= 2k081f18§2 cee sﬁ“, (98)
L, = 2ol gle) (99)
where 2 < 51 < 89 < --- < 8y, 2 <ty <ty < -+ < ty, ko

and [y are non-negative integers, s; and ¢; are prime num-
bers, and k; and [; are positive integers for i =1,2,---,u

and j = 1,2,---,v. We define the effective physical radii
r1 and ro by
2R1/Ly for k() Z ].,
= 100
" {31 /L,  for ko =0, (100)
2R2/Lz for lo Z ].7
= 101
"2 {32 /L, forly = 0. (101)

Because we require that all fields have zero modes or
KK modes, we can only have one additional non-equivalent
Zo symmetry for all the 3-branes, which is not equivalent
to two global Z5 symmetries PY and PZ. In this scenario,
ko > 1,1 > 1;2%|(pf +¢f) fori = 1,2, -, n, 2"|(pF +¢5)
forj=1,2,---,m

Because all the Zy symmetries for the 3-branes are
equivalent, we write them as pv', Denoting the field with
(PY, P?, P?‘/Z/) = (+,=£,%) by ¢++4, we obtain the fol-
lowing KK mode expansions:

¢>+++(x“,y, 2)

Yy (6F1i™ (@

n=0m=0

M)ATY (y, 1) AT (2,72)
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+ gt 2m+1>(xﬂ)Ai”j1(y,rl)A?:zH(z,rQ)) . (102)
¢++ ( Y, 2 )
=33 (@ AT ) AT )
n=0m=0
+ TR (@) AT (1) AT (2,72) ) (103)
P4 +( “,97 z)
o Z Z (¢(2n 2m+1) )A?‘z_(y,?"l)AQ_ﬁ—‘rl(Z,rQ)
n=0m=0
+ ¢(2n+1 2m+2)( M)Ainjl(y,rl)AQ_W_L+2(Z,’I"2)> , (104)
¢+77( 7y7 )
Yy (0F 2 (@) A2 (g, 1) A2 (2,7
n=0m=0
- QEEEED (i) AT 1) AZIF (2, 7) ), (105)
¢ ++( nya )
_ Z Z ( 2n+1 2m) )A%nj—l(y7T1)A3_7i(z7r2)
n=0m=0
+ (b 2n+2 2m+1)( #)A%nj—2(y,7“1)14?:1-’_1(2,7“2)) , (106)
(rb +— ( 7y7 )
_ Z Z ( 2n+1 2m+1)( “)Aznjl(y,rl)Ai"lﬂ(zwg)
n=0m=0
QO (@) ATy ) AT (2,70) ), (107)
¢——+( 7y7 )
_ Z Z ( _inl 2m+1)($“)A2_n++1(y,Tl)A2_T_+1(Z7T2)
n=0m=0
+ glnt2ame2) (xu)A‘i”f?(y,rl)A’i"i“(z,rz)) . (108)
¢———(a",y,2)
= Z Z (¢(_2ft1’27'L+2)(:r”)A2_”f1(y, r) A2 (2, ry)
n=0m=0

+ ¢(2n+2 2m+1)( M)AQ_TL_—‘,—Q(

v A% (2,r2)) . (109)

The 4-dimensional fields ¢("™) acquire masses (n?/r? +
m?/r2)'/2 upon the compactification. The zero modes are
contained only in the ¢ fields. Moreover, because 0 <
ry < Ry, and 0 < ro < Ry, the masses of the KK states
((n?/r? + m?/r2)1/?) can be set arbitrarily heavy if L,
and L, are large enough, i.e., we choose suitable (p!,gY)
for some i, and (p?,q;) for some j. Therefore, there is
no simple relation between the physical size of the extra
dimensions and the mass scales of the KK states.

In short, we can have three non-equivalent Z5 symme-
tries where two are global symmetries. To be explicit, we
would like to give an example: n = 1, 2|(p} + ¢f), and
2|(p% + ¢7). In this simple example, the local Z5 symme-
try for the 3-brane can become global if pY = ¢} =1 and
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p7 = ¢; = 1, and this global symmetry can be moduloed;
then, the space-time is M* x (S1/Zy x S/ Z5)/Z5.

6 GUT breaking
on the space-time M* x M*' x M*

In this section, we would like to discuss the GUT break-
ing on the space-time M* x M*' x M. As we know, the 6-
dimensional N = 1 supersymmetric theory is chiral, where
the gaugino (and gravitino) has positive chirality and the
matter particles (hypermultiplets) have negative chirality,
so it often has an anomaly except that we put the standard
model fermions on the brane and add a multiplet in the
adjoint representation of the gauge group or some other
matter contents in the bulk to cancel the gauge anomaly.
The 6-dimensional non-supersymmetric GUT models and
N = 1 supersymmetric GUT models can be considered
as special cases of N = 2 supersymmetric GUT models,
so we only discuss the 6-dimensional N = 2 supersym-
metric GUT models. The N = 2 supersymmetric SU(5),
SU(6), SU(7), SO(10), and SO(12) models on the space-
time M*xT?/(Z2)% and M*xT?/(Z3)* have been studied
completely in [8], and those discussions can be extended to
the complete discussions of GUT breaking on the space-
time M* x M' x M' where there are three and four Z,
symmetries. Because the discussions for GUT breaking are
similar, we will not give the complete discussions for the
SU(M) and SO(2M) models in this paper. To explain the
idea, we will discuss the N = 2 supersymmetric SU(6) and
SO(10) models on M* x S x S where there are four Z,
symmetries, and the N = 2 supersymmetric SU(6) model
with gauge-Higgs unification on M?* x S1/Zy x S'/Z,
where there are three Z5 symmetries.

Let us explain the 6-dimensional gauge theory with
N = 2 supersymmetry. N = 2 supersymmetric theory
in 6-dimension has 16 real supercharges, corresponding to
N = 4 supersymmetry in 4-dimension. So, only the vector
multiplet can be introduced in the bulk, and we have to
put the standard model fermions on the 4-branes, 3-branes
or 4-brane intersections. In terms of the 4-dimensional
N =1 language, it contains a vector multiplet V(A,, A1),
and three chiral multiplets X5, Xg, and @. All of these are
in the adjoint representation of the gauge group. In addi-
tion, the X5 and X chiral multiplets contain the gauge
fields A5 and Ag in their lowest components, respectively.

In the Wess—Zumino gauge and 4-dimensional N =1
language, the bulk action is [14]

1
S:/d%{Tr [/dQG <4k92 We

1

1
* i (458526 PS5 — ﬁ¢[25’26])> +H.C}

1
4

VoY) + dle”Vde"

6

> (V20 + 5he (—v20; + T)e¥

=5
}. (110)

+ 87',6
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The gauge transformation is given by

Vo efteVel (111)
2 = eMNZ = V29)e4 (112)
D — etde 4, (113)

where i = 5, 6.
From the action, we obtain the vector multiplet trans-
formations under the Z, operators P/, Pz, PY =

V(e —y;,2) = BV (at,yj, 2)(PY) 7, (114)
s(at, —yi, 2) = =P Z5(a, yj, )(Py) (115)
So(at, =y, z) = P! S (", yj, 2)(P)) 7! (116)
P(at, —yj, 2) = —PD(at,y;, 2)(PY) (117)
V(ah,y, —zj) = PPV (2", y, 25)(Pf) " (118)
Zs(at,y, —z;) = P; Zs(at,y, 25)(P; ) (119)
Zo(x,y, —2;) = —P; X (", y, J)(Pz) (120)
P(at,y, —25) = —P;d(zH,y, 2 j)(PjZ) (121)
V(ah, —yl, —2) = PV V(" g, 2)(PY) 7Y (122)
S5t —yp, —2)) = =PV Ss(at, 2 (PYVF) 7, (123)
To(at, —y}, —2)) = =PV Sg(at, o}, 2)(PYV*) 71, (124)
D, —y;, —2}) = PV ®(at,y), 2)(PY) 7 (125)

6.1 SU(6) and SO(10) breaking on M* x S! x St

In this subsection, we would like to discuss the SU(6) and
SO(10) models on M* x S x S*. We require the following.

(1) There are no zero modes for the chiral multiplets X,
Y6 and &, and

(2) for the zero modes, we only have the 4-dimensional
N = 1 supersymmetric SU(3) x SU(2) x U(1)? model.

For simplicity, we assume that there are four 4-branes,
where two are along the y direction and two along the z
direction, 4|(pY+4¢Y), and 4|(pf +¢f). So, we will have four
local Zy symmetries: Py, P}, P} and Py.

We will choose the unit matrix representations for PJ
and F§ in the adjoint representation of the GUT gauge
group. So, considering the zero modes, under a Pj projec-
tion, we can break the 4-dimensional N = 4 supersymme-
try to N = 2 supersymmetry with (V, Xs) forming a vec-
tor multiplet and (X5, ®) forming a hypermultiplet, and
we can break the 4-dimensional N = 2 supersymmetry to
N =1 supersymmetry further by a F§ projection.

For a generic bulk field ¢(z*,y, z), we can define four
parity operators P, Ply , P§ and P7, respectively. De-
noting the field with (PY, P}, P§, Pf) = (+,4,+,4) by
(¢4++++, we obtain the KK mode expansions, which are
those given in (61)—(76).

(I) SU(6) model. We need to choose the matrix represen-
tations for the parity operators Py, P}, P; and Pf, which
are expressed in the adjoint representaion of SU(6). Be-
cause SU(6) D SU(5) x U(1), SU4) x SU(2) x U(1),
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SU(3) x SU(3) x U(1), we find that, in general, P} and
Pf just need to be any two different representations from
these three representations: diag(+1, +1,+1,+1,+1,—1),
diag(—1,-1,—-1,41,+1,-1), and diag(—1,—1,—1,+1,
+1,41). So the matrix representations for Py, P§, P}
and P are?

Pé’ = dia, (—l—l +1,4+1,4+1,+1, +1),
Pg = diag(+1,+1,+1, +1,+1, +1), (126)
Py =di g(+1 +1 +1,+1,41, -1),
Pf = diag(—1 —1,+41,+1,-1), (127)
or
P/ = diag(+1,+1,+1,+1,+1,-1),
P} = diag(—1,-1,-1,+1,+1,+1), (128)
or
P/ = diag(—1,—-1,-1,+1,+1,+1),
P} = diag(—1,-1,-1,+1,+1,-1). (129)
Let us point out that
U(6)/{diag(+1,+1,+1,—|—1,+1,—1)}
~ SU(5) x U(1), (130)
U(6)/{diag(—1,—-1,—1,+1,+1,-1)}
~ SU(4) x SU(2) U(1), (131)
U(6)/{diag(—-1,-1,—-1,+1,4+1,+1)}
~ SU(3) x SU(3) U(1). (132)

(II) SO(10) model. We choose the following matrix rep-
resentations for the parity operators PY, P§, P/, and
Pf, which are expressed in the adjoint representaion of

SO(10):

Py = diag(+0¢, +00, +00, +00,+00), (133)
P} = diag(+o00, +00, +00, +00, +00), (134)
P} = diag(o2,02,09,02,02), (135)
Pf = diag(—og, —09, —00, +00, +00), (136)

where o( is the 2 x 2 unit matrix and o9 is the Pauli
matrix.
We would like to point out that

O(10)/PY ~ SU(5) x U(1),
0O(10)/Pf = SU(4) x SU(2) x SU(2).

(137)
(138)

Now, we discuss the GUT breaking for SU(6) and
SO(10) together. Assume G = SU(6) or G = SO(10).
Under the P} and P} parities, the gauge generators T4,
where A = 1,2,---,35 for SU(6) and 45 for SO(10) are
separated into four sets: T%? are the gauge generators for

the SU(3) x SU(2) x U(1) x U(1) gauge symmetry, 7%,

2 For the SU(6) model and SO(10) model, one can inter-
change the matrix representations Py and Pf, i.e., P} +— Pf,
and the discussions are similar
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Table 2. Parity assignment and masses (n > 0,m > 0) for the
vector multiplet in the SU(6) or SO(10) models on M* x S* x
Sl

(PY,PY,P5,Pf) Field Mass

(+,+, +,+) V;”j V(2n)2/r? + (2m)2 /r2

(+, 4+ —) Vit (@n)2/rE 4 (2m+ 1)2/r3
(4, =+, +) Vb V(@2n+1)2/r3 + (2m)? /13
(+, =+ —) Vit /@n+ D2/ + 2m+ 1213
(== 4) et 422/ + 2m)2/r3
(= =+ -) st /@n+2)2 /17 + (2m+ 1)2/r3
(—+++) 52t @+ 1)2/rE+ (2m)?/r3
(= +,+,—) 58/ @n+ )2/ + @m+ 1)2/r3
(+,+—-) set V@i 4 2m+2)% /13
(+,+,—+) set NV@n)? i+ 2m+1)2/r3
(+ = =) 23’? V@ +1)2/r2 + (2m +2)?/r3
(+, == +) 5et V@n+1)2 /17 + (2m+ 1)2/r3
(= ——,—) qs“"j V©@n+2)2/r? + (2m +2)2/r3
(== —+) 2" \/2n+2)?/ri+ (2m +1)2/r3
(= 4+ =) ot \/n+1)2/r7 + (2m +2)%/r3
(=4, —+) ot /@n+ 1D)2/r? + 2m + 1)2/r2

T%b and T%® are the other broken gauge generators which
belong to {G/P{N{cosetG/Pf}}, {{cosetG/P{}NG/Pf},
and {{cosetG/P}} N {cosetG/Pf}}, respectively. There-
fore, under P, Pg, P/ and Pf, the gauge generators
transform as

PYTAP(PY) ™ =147, BT AP (R~ = TP, (139)
YT (P~ = TP, PYTP(PY) ™1 = =T™%, (140)
PETAYPE)~h =TAY PETAY PP = —TAY. (141)

The particle spectra are given in Table 2, and the gauge
superfields, the number of 4-dimensional supersymmetry
and the gauge group on the 4-branes or 4-brane intersec-
tions are given in Table 3. For the zero modes, we only have
4-dimensional N = 1 supersymmetric SU(3) x SU(2) x
U(1) x U(1) model in the bulk. From Table 3, we see that,
including the KK modes, the 3-brane (the intersection of
4-branes) and 4-brane preserve N = 1 and N = 2 super-
symmetry, respectively. The gauge group on the 3-brane
can be G, or G/Pf, or G/PY, or SU(3) x SU(2) x U(1) x
U(1). And the gauge group on the 4-brane can be G, or
G/P} or G/Pf. The phenomenology discussions are sim-
ilar to those in [8].

6.2 SU(6) breaking on M* x S'/Z, x S'/Z,

In this subsection, we would like to discuss the SU(6)
model on M* x S'/Zy x S'/Zy in which there are two
global Z; symmetries and one local Z; symmetry. Al-
though we cannot project out all the zero modes for the
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chiral multiplets Y5, Y and @, we require that the extra
zero modes are only from @ and form two Higgs doublets,
which is called gauge—Higgs unification. Our basic require-
ments are

(1) there are no zero modes for the chiral multiplets X5
and Xg;

(2) considering the zero modes, there is only one pair
of Higgs doublets because if we had two pairs of Higgs
doublets, we may have a flavour changing neutral current
problem.

For simplicity, we assume that there are only four 4-
branes, which are the boundaries for St /Z3 x S'/Z5, there
is only one 3-brane in the bulk, and 2|(p{ +47), 2|(pF +qF).
So we will have two global Zs symmetries PY and P?#, and
one local Z; symmetry PY"Z" In order to project out all
the zero modes of X5 and X, we would like to choose the
matrix representation of PY equal to that of P>.

For a generic bulk field ¢(z#,y, z), we can define three
parity operators PY, P?, Py,z/7 respectively. Denoting the
field by (PY, P#, P¥'?") = (4,+,4) by ¢+1+, we obtain
the KK mode expansions which are given in (102)—(109).

There are two scenarios which have gauge-Higgs uni-
fication.

(1) We choose the matrix representations for PY, P* and

PY'?" as follows:
PY = P? = diag(+1,+1,+1,+1,+1,-1), (142)
PY% = diag(—1,-1,—1,41,+1,+1). (143)

(2) We choose the matrix representations for P¥, P* and

PY'"?" as follows:
PY = P? = diag(—1,—1,—1,+1,+1,—1), (144)
PY% = diag(—1,—1,—1,+1,+1,+1). (145)

Under PY (or P#) and Py/zl parities, the gauge gener-
ators T4, where A =1,2,---,35 for SU(6) are separated
into four sets: T%° are the gauge generators for SU(3) x
SU((2) xU(1)xU(1) gauge symmetry, T b Tab and Tab
are the other broken gauge generators Wthh belong to
{G/PY N {cosetG/PY*}}, {{cosetG/PY}NG/PY*}, and
{{cosetG/PY} N {cosetG/PY*'}}, respectively. Therefore,

under PY, P*, and Py,z/, the gauge generators transform
as
py7aB(py)t = TaB,
pvTaB(pv)~l = _T%B (146)
prraB(p?)-t = 7B,
PAT®B(p*)~1 = B7 (147)
py'F pAD Py’z’) L_ pAb,
py'F pAb Py 2! )L TA b (148)

We present the particle spectra in Table4, and the
number of 4-dimensional supersymmetry and gauge sym-
metries on the 3-brane, 4-brane intersections and 4-branes
in Table5. Because the 3-brane is the fixed point under
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Table 3. For the model G = SU(6) or G = SO(10) on M* x S* x S*, the gauge
superfields, the number of 4-dimensional supersymmetry and gauge symmetries on
the interesections of 4-branes, which are located at (y = 0,z = 0), (y = 0,z = z1),
(y =y1,2=0), and (y = y1,2 = 21), or on the 4-branes which are located at y = 0,

z=0,y=y,z2=2

Brane position Fields SUSY Gauge symmetry
(0,0) VB N=1 G
(0, 21) v s N=1 G/P;
(41,0) VR, 5B N=1 G/
(y1,21) Ve, gt peb b N =1 SU(3) x SU(2) x U(1) x U(1)
y=0 VB s B N=2 G
2=0 VB oAb N=2 G
Y= yeB peB pel ¢tB N =2 G/P}
r=2x VAL pAt At gAb N =2 G/P;
py'? symmetry, it preserves 4-dimensional N = 2 su- Table 4. Parity assignment and masses (n > 0,m > 0) for the

persymmetry. The 4-branes are the fixed lines under one
global symmetry, the 4-brane intersections and 4-branes
preserve 4-dimensional N = 1 and N = 2 supersymme-
try, respectively. The phenomenology discussions are also
similar to those in [8].

7 Discrete symmetry
on the space-time M* x A?

As we know, in each point of the 2-dimensional real man-
ifold, there is an open neighborhood homeomorphic to R?
in real coordinates or C'! in complex coordinates, and its
rotation group is locally SO(2) or U(1). So we may de-
fine the Z,, discrete symmetry on the 2-dimensional man-
ifold in which n is any positive integer and we can break
any supersymmetric SU(M) GUT models down to the
4-dimensional N = 1 supersymmetric SU(3) x SU(2) x
U(1)™~% models for the zero modes. One obvious candi-
date for the extra space manifold is the disc D? where
there is one 3-brane at the origin and one 4-brane at the
outer boundary. To be general, we can consider that the
extra space manifold is the annulus where there are two
boundary 4-branes. For simplicity, we denote the annulus
by AZ2.

Furthermore, we discuss the KK mode expansions on
the space-time M*x (a segment of A?), and find that the
masses of the KK states might be set arbitrarily heavy if
the range of the angle is small enough.

7.1 Discrete symmetry on M4x A2

We consider that the extra space manifold is the annulus
A2. Convenient coordinates for the annulus A? are the
polar coordinates (r,6), and it is easy to change these to
complex coordinates by z = re'. We assume that the
innner radius of the annulus is Ry, and the outer radius
of the annulus is Ry. Taking R; = 0, we obtain the disc
D?. Considering Z,, symmetry on A2, we define

vector multiplet in the SU(6) model on M* x S*/Z5 x S*/Z,

(PY,P?,PY*')  Field Mass
(+,+:+) Vi, o V@n)2 [+ (2m)?/r}
or /2n+1)2/r7 + (2m +1)2/r3
(+,+,-) Vet et /@n+ 1)2/r2 + (2m)2 /12
or \/(2n)?/r7 + (2m +1)2/r3
) xgh, g /@t @m+1)2/r3
or /(2n +1)2/r? + (2m + 2)2/r3
(+--) Z5h, 380 V@)t 4 (2m + 2)2/r3
or /(2n+1)2/r2 + (2m + 1)2/r3
(= ++) gt £ /@12 /rE+ Cm)/r3
or \/(2n +2)2/r? + (2m + 1)2/r3
(= +-) z, 25t @n+2)2/ri + (2m)?/r3
or /(2n+1)2/r? + (2m + 1)2/r3
(= —+) Vi, @t \/@n+ 1)2/rT + (2m + 1)2/r3
or \/(2n +2)2/r? + (2m + 2)2/r3
(==, -) Ve et /(2n +2)2/r2 + (2m + 1)2/r2
or \/(2n+ 1)2/r? + (2m + 2)2/r3
w = e2m/m (149)

and we define the generator for Z, as {2 which satifies
nr=1.

For a generic bulk multiplet @ which fills a represen-
tation of the bulk gauge group G, we have

QD(z", 2, 2) = P(a, wz,w" 1 2)
= ne(Re)"*®(a", 2, 2)(Rg")™*, (150)

where ng C Z,, and Ry is an element in the adjoint rep-
resentation of G which satisfies RY, = 1.
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Table 5. The G = SU(6) model with gauge-Higgs unification on M* x
S'/Zy x S'/Z>. The gauge superfield V,,, the number of 4-dimensional su-
persymmetry and gauge symmetries on the 4-brane intersections or 3-brane,
which are located at the (y = 0,2 =0), (y =0,z =7R2), (y =7R1,z =0),
(y = mR1,z = wR2), and (y = y1,2 = z1), and on the 4-branes which are
located at the fixed lines y =0, y = wR1, 2 =0, z = TR2

Brane position Fields SUSY Gauge symmetry
(0,0), (0,7R2), (TR1,0), (TR, 7R2), V% N=1 G/PYor G/P*
(y1,21) VAt N=2 G/pY*
y=0,y=7R1,2=0, z="7Rs veB  N=2 G/PYor G/P?

A generic field ¢(z#, z, Z) with eigenvalue w' under the
operator {2 we write as ¢ (x#, 2, ), i.e.,
Q(bwl(x#azaz) :ngbwl(xua'z,z)' (151)

The KK modes expansions for ¢ (x#, 2, Z) are

oo

b (', 2,2) = Z iqbfﬂk)(x#)fﬁ;(z,,?), (152)

j=—00 k=1

where [ =0,1,---,n— 1, and

n—1
;-”kl (2,2) = Z w(”_s)lfjk(wsz7w”_sé). (153)
s=0

The functions f;x(z, Z) are defined by
fjk(z, z) = Jj()\jk’l“>eij9, (154)
or

fir(z.2) = Ji(gwl2) (2/12])

where J; (A7) is the first order Bessel function, satisfying
the Dirichlet or Neumann boundary condition at r = R
and r = Ry:

(155)

de ()\jkr)

Jij(Ajkr) =0 or D

=0, forr=R; and R».

(156)
The zero modes are contained only in the ¢ o fields, i.e.
l=0.
First, we consider that the extra space manifold is
a disc D?, i.e., Ry = 0, so we only have the boundary
condition at r = Ry, and then we can have all the KK
states. There is also one fixed point under the Z, sym-
metry, which is the center of the disc. One might wonder
whether there is a singularity for f;x(z,Zz) at the origin
r = 0 when j # 0; however, there is no singularity and we
only have zero modes at the origin because Jy(0) = 1 and
Js(0) = 0 for s > 1. By the way, the global Z,, symmetry
can be moduloed from D?, and the corresponding orbifold
is D?/Z,.
Second, we consider that the extra space manifold is
an annulus A2. The Z,, symmetry acts free on the annu-
lus A2, so we can obtain the quotient manifold A2/Z,, by

moduloing the Z,, symmetry. We will also have much less
KK states, i.e., a lot of KK states in the summation might
be absent because the boundary conditions at r = R; and
r = Ro must be satisfied simultaneously. The interest-
ing phenomenology is that we might have the scenario in
which only a few KK states are light and the other KK
states are relatively heavy, so we may produce the light
KK states of the gauge fields at future colliders.

7.2 KK modes on M*x (a segment of A?)

If the extra space manifold is a segment of A2, we would
like to discuss the KK modes. We assume that the inner
radius of the annulus is Ry, the outer radius of the annulus
is Ro, and the angle 6 is

0<6<a2m, (157)
where 0 < a < 1. The KK modes expansion for a generic
field ¢ is

o(at, z,2) = Z Z(b(jk)(x“)fjk(z,i), (158)

j=—o00 k=1
where
Fin(2,2) = Jj (a0 (Njar)e?0/ 42, (159)
or
Fir(2,2) = Jj a0y (Ngiel2)) (/|27 4. (160)

At r = Ry and r = Ry, the function J;,(44)(A;jx7) should

satisfy the Dirichlet boundary condition or Neumann con-

dition,

dJ; (Ajr)
d)\jkT

In short, if « is very small, then j/(4a) will be very large,
and the KK states may be set arbitrarily heavy, which is
similar to [11].

We can define the Z5 reflection symmetry on the sector
of D? or the segment of A2. However, we cannot define
the discrete symmetry Z, for n > 2 on the sector of D?
or segment of A2, so it is not interesting for us to discuss
the supersymmetric GUT breaking in this case.

Jj(/\jkr) =0or =0. (161)
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8 GUT breaking on the space-time M* x A2

In this section, we would like to discuss the 6-dimensional
N = 2 supersymmetric SU(M) GUT models on the space-
time M* x A% or M* x D?.

In principle, we can break any SU(M) gauge group
on the space-time M* x A% or M* x D? because we can
choose a Z, symmetry in which n is very large. As an
example, we will discuss the SU(6) models on the space-
time M* x A% or M* x D? with Zy symmetry, or one can
consider the space-time M* x A2/Zy or M* x D?/Z,.

The N = 2 supersymmetry in 6-dimension corresponds
to N = 4 supersymmetry in 4-dimension; thus, only the
gauge multiplet can be introduced in the bulk. This mul-
tiplet can be decomposed under the 4-dimensional N =1
supersymmetry into a vector multiplet V' and three chi-
ral multiplets Y, &, and #° in the adjoint representation,
with the fifth and sixth components of the gauge field,
As and Ag, contained in the lowest component of Y. The
standard model fermions are on the boundary 4-brane at
r = Ry or r = Ry for the annulus A2, and on the 3-brane
at the origin or on the boundary 4-brane at r = Ry for
the disc D?.

In the Wess—Zumino gauge and 4-dimensional N = 1
language, the bulk action is [14]

S = /d6 { U 9<4]€12wawa
+ H (@Caqs— 72[@ @C})) + h.c}
+ /d‘*ekigzﬂ [(ﬂaf + 2He V(=v20 + E)eV]

4
v [aodm 2

_ Notice that if we consider Zg symmetry, then w =
¢'27/9 From the above action, we obtain the transforma-
tions of the gauge multiplet under 2:

(162)

+¢T —V@e +¢CT —V@C \%

V(wz,w®2) = RV (2, 2) Ry}, (163)
D(wz,w®2) = R0 X (2, 2) Ry, (164)
P(wz,w¥2) = wmRd(2, 2) Ry, (165)
P (wz,w2) = WM RGP (2, Z)R,,  (166)

where 0 < m < 8; Ry, is an element in the adjoint repre-
sentation of the GUT gauge group and satisfies the equa-
tion RY, = 1. To be compatible with our previous discus-
sions in Sect. 6, we choose m = 8, and then

P(wz,w82) = W Rod(2,2) R,
P°(wz,w2) = W R®°(2,2) R, .

(167)
(168)

Now, we would like to discuss the supersymmetric
SU(6) model. We choose the following matrix represen-
tations for the Zy operator {2, R, which are expressed in
the adjoint representation of SU(6):

Rg = diag(w?, w?,w? w®, wd, w?). (169)
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So, upon using the Zg operator {2, the gauge generators
T4, where A = 1,2,---,35 for SU(6) are separated into
two sets: T are the gauge generators for the SU(3) x
SU(2) x U(1)? gauge group, and T% are the other broken
gauge generators:

RoT R, =T, RoT® R,' = -T°. (170)

First, we consider that the extra space manifold is the
annulus A2. For the zero modes, we have 4-dimensional
N = 1 supersymmetry and SU(3) x SU(2) x U(1)? gauge
symmetry in the bulk and on the 4-branes at r = R;
and r = Rp. Including the KK states, we will have the
4-dimensional N = 4 supersymmetry and SU(6) gauge
symmetry in the bulk, and on the 4-branes at » = R; and
r= RQ.

Second, we consider that the extra space manifold is
the disc D?. For the zero modes, we have 4-dimensional
N = 1 supersymmetry and SU(3) x SU(2) x U(1)? gauge
symmetry in the bulk and on the 4-brane at r = Ros.
Including all the KK states, we will have the 4-dimensional
N = 4 supersymmetry and SU(6) gauge symmetry in the
bulk, and on the 4-brane at r = R. In addition, we always
have 4-dimensional N = 1 supersymmetry and SU(3) x
SU(2) x U(1)? gauge symmetry on the 3-brane at the
origin in which only the zero modes exist. So, if we put
the standard model fermions on the 3-brane at the origin,
the extra dimensions can be large and the gauge hierarchy
problem can be solved, for there does not exist a proton
decay problem at all.

In order to break the extra U(1) symmetry, we have
to introduce the extra chiral multiplets which are singlets
under the standard model gauge symmetry, and use the
Higgs mechanism. If we considered the chiral model on
the observable brane, we will have to introduce the exotic
particles due to the anomaly cancellation.

In short, we can introduce Z,, symmetry to break any
supersymmetric SU(M) GUT models as long as n is large
enough. There are 4-dimensional N = 1 supersymme-
try and SU(3) x SU(2) x U(1)M~* gauge symmetries in
the bulk and on the 4-branes for the zero modes, and
on the 3-brane at the origin in the disc D? scenario. In-
cluding all the KK states, we will have the 4-dimensional
N = 4 supersymmetry and SU(M) gauge symmetry in
the bulk, and on the 4-branes. In addition, the standard
model fermions are on the boundary 4-brane at r = R; or
r = Ry if the extra space manifold is the annulus A2, and
on the 3-brane at the origin or on the boundary 4-brane
at r = Ry if the extra space manifold is the disc D?.

9 Discrete symmetry
on the space-time M* x T2

In this section, we would like to discuss the discrete sym-
metry on the space-time M* x T2. Because for any point in
T2, there is an open neighborhood which is homeomorphic
to R?, naively, one might think that one can introduce any
Z,, symmetry on T?2. However, this is not true. In fact, we
can prove that the only discrete symmetries on the torus
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from the rotation group SO(2) or U(1) are Zs, Z3, Zy,
and Zg.

The proof is as follows. In complex coordinates, the
torus T2 can be defined by C! modulo the equivalent
classes: z ~ z + 27R; and z ~ z 4+ 27 Row where w = ¢l?.
So we need to discuss the Z5, Z3 and Z,, symmetries for
n > 3 separately.

First, we consider Zs symmetry; the equivalent class is
z ~ —z, and the two fixed points are z = 0 and z = 7R; +
mRow. Therefore, the global Zs symmetry can be defined
on the general torus T2. The 3-branes can be located at
the fixed points.

Second, we consider Z3 symmetry. We have to choose
R; = Ry = R. Define 6 = 27/3; we obtain the equivalent
class z ~ z + 2mRw equivalent to the equivalence class
z ~ z 4 27 Re'™/3. There are three fixed points: z = 0,
2 = 27 Re™/6/3/2 and z = 4w Rel™/6 /3/2. The 3-branes
can be located at the fixed points.

Third, in order to define the Z, symmetry for n >
3, we have to choose § = 27/n and Ry = R; = R. In
addition, w should satisfy the following equations:

2nRw =1"2r R+ K27 Rw, (171)

2nRww = 127 R + k27 Rw, (172)

where [, k, I’ and k' are integers. The first equation is
satisfied by choosing I’ = 0 and k&’ = 1. Moreover, from
the second equation, we obtain

IEXV R
-2

The complete solutions are [ =0 and k = £1, [ = 1 and
k = —1. Then all the possible w are £1, +i, el27/3, ¢i27/6
Therefore, the discrete symmetries Z,, for n > 3 on the
torus from the rotation group SO(2) or U(1) are Z, and
Zgs. Moreover, for the Z, discrete symmetry, there are two
Z,4 fixed points: z = 0 and z = 227 Re™/*, two Z, fixed
points: z = 7R and z = mRe'™/2. For Zg discrete symme-
try, there is one Zg fixed point z = 0, and there are two Z3
fixed points: z = 27 Re'™/6/3'/2 and z = 47 Re'™/6/31/2
and three Z, fixed points: z = 3/27Re'™/6, 2 = 7R and
z = mRel™/3. The 3-branes can be located at those fixed
points.

For the general T? defined by the equivalence classes
z~ 24+ 2Ry and z ~ 2+ 2w Rye'?| the KK modes expan-
sion for a generic field ¢ is

Z Z OUR (2" fin(2,2),  (174)

(173)

Jj=—00 k=—o0
where
fir(:3) = explilla — b)z + (a+ B3]}, (175)
and
_J
a= TR (176)
1 k J
= Py 1
b= o <2R2 2R, COSH) (77
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The mass for ¢7* is

L[ 2
sin92 4R% 4R% 4R1R2

Mijk: cosf| . (178)

The zero modes are contained in ¢(°?) sector, i.e., j = 0
and k = 0.

The fundamental group for the torus is Z € Z, so one
might think we can break the gauge symmetry by a Wilson
line in the mean time. The key question is how to define
the suitable KK mode expansions for the bulk fields in the
Wilson line approach, because we require that the fields

without zero modes should have KK mode excitations.

10 GUT breaking on the space-time M* x T?

We would like to consider the 6-dimensional N = 2 super-
symmetric SU(5) model on M* x T? with Zs symmetry.

Notice that we consider Zg symmetry; we define w =
¢'?™/6_ From the action in (162), we obtain the transfor-
mations of the gauge multiplet under 2:

V(wz,w’2) = RV (2, 2) Ry}, (179)
D(wz,w®2) = w’RuX(2,2) R, (180)
P(wz,wz) = W Rod(2, 2) Ry, (181)
P°(wz,w’z) = W R®°(2,2) R, (182)

where Ry, is an element in the adjoint representation of
SU(5) and satisfies the equation RS, = 1.
We choose the following matrix representations for the
Zg operator {2, R, which are expressed in the adjoint
representation of SU(5):
Rg = diag(1,1,1, -1, —1). (183)
So, upon using the Zg operator (2, the gauge generators
T4, where A = 1,2,---,24, for SU(5) are separated into
two sets: T are the gauge generators for the standard
model gauge group, and T are the other broken gauge
generators
RoTR,' =T, RoT R, = -T (184)
In addition, the representation of the generator for Zo
symmetry is
R} = diag(1,1,1, -1, —1), (185)
and the representation of the generator for Z3 symmetry
is

R% = diag(1,1,1,1,1). (186)

Therefore, the gauge symmetries on the 3-branes at the
Z fixed points and on the 3-branes at the Z3 fixed points
are

U(5)/R,
U(5)/R%

~ SU(3)
~ SU(5).

x SU(2) x U(1), (187)

(188)
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Table 6. The G = SU(5) model on M* x T? with Zs symmetry. The gauge
multiplet, the number of 4-dimensional supersymmetry and gauge symmetry
on the 3-branes, which are located at the Zg fixed point z = 0; the Z3 fixed
points: z = 271'Rei”/6/31/27 and z = 477Rei”/6/31/2; and the Z> fixed points:
z=3"Y27rRe™/% z = R, and z = TRe™/?

Brane position Fields SUSY Gauge symmetry
z2=0 Ve N=1 SU(3)xS8U((2)xU(1)
z = 2w Re™/¢/3Y/2 VA D 9%, (99 N =1 SU(5)

z = 4w Rel™/0 /31/2

z = 3Y21Re'™/8, Ve, A @4 (891 N=4 SU3)xSU(2) xU(1)

z=mR, z = wRe™?

The gauge multiplet, the number of 4-dimensional su-
persymmetry and gauge symmetries on the 3-branes are
given in Table6. In short, we have 4-dimensional N = 1
supersymmetry and the standard model gauge symmetry
in the bulk for the zero modes, and on the 3-brane at Zg
fixed point for all the modes. Including the KK states,
we will have the 4-dimensional N = 4 supersymmetry
and SU(5) gauge symmetry in the bulk, the 4-dimensional
N = 1 supersymmetry and SU(5) gauge symmetry on the
3-branes at Z3 fixed points, and the 4-dimensional N = 4
supersymmetry and SU(3) x SU(2) x U(1) gauge sym-
metry on the 3-branes at Zy fixed points. The standard
model fermions and Higgs fields can be on any 3-brane at
one of the fixed points. In particular, if we put the stan-
dard model fermions and Higgs fields on the 3-brane at
the Zg fixed point, the extra dimensions can be large and
the gauge hierarchy problem can be solved because there
is no proton decay problem at all.

11 Discussion and conclusion

With the ansatz that there exist local or global discrete
symmetries in the special branes’ neighborhoods, we dis-
cuss the general reflection Z; symmetries on the space-
time M?* x M' and M* x M' x M'. We find that we
can have at most two Z, symmetries on M* x M' and
four Z, symmetries on M* x M' x M'. As represen-
tatives, we discuss the N = 1 supersymmetric SU(5)
model on the space-time M* x M, where the standard
model fermions can be in the bulk or on the 3-brane, the
N = 2 supersymmetric SU(6) and SO(10) models on the
space-time M? x S x S and the N = 2 supersymmetric
SU(6) model with gauge-Higgs unification on the space-
time M* x S'/Zy x S'/Z,, where the standard model
fermions must be on the 4-brane, or 3-brane, or 4-brane
intersection. For the zero modes, we have 4-dimensional
N = 1 supersymmetry and SU(3) x SU(2) x U(1)"3
gauge symmetry in which n is the rank of the GUT gauge
group. The gauge symmetry and supersymmetry may be
broken on the 3-branes, or 4-branes, or 4-brane intersec-
tions. In particular, in those models, the extra dimensions
can be large and the masses of KK states can be set arbi-
trarily heavy.

In addition, we discuss the discrete Z,, symmetry on
the space-time M* x A? and M* x D? in which n is any
positive integer. In this kind of scenario, we can break
any SU(M) gauge symmetry for M > 5 down to the
SU(3) x SU(2) x U(1)M=* gauge symmetry by introduc-
ing the global Z, symmetry as long as n is large enough.
In general, considering the 6-dimensional N = 2 super-
symmetry, we have 4-dimensional N = 1 supersymmetry
and SU(3) x SU(2) x U(1)M~* gauge symmetry in the
bulk and on the 4-branes for the zero modes, and on the
3-brane at the origin where only the zero modes exist in
the disc D? scenario. Including all the KK states, we will
have 4-dimensional N = 4 supersymmetry and SU(M)
gauge symmetry in the bulk, and on the 4-branes. The
standard model fermions should be on the boundary 4-
brane or 3-brane at the origin. By the way, if we put the
standard model fermions on the 3-brane at the origin, the
extra dimensions can be large and the gauge hierarchy
problem can be solved for there does not exist a proton
decay problem at all. Moreover, if the extra space manifold
is the annulus A2, for suitable choices of the inner radius
and outer radius we might construct the models where
only a few KK states are light and the other KK states
are relatively heavy due to the boundary conditions on
the inner and outer boundaries, so we might produce the
light KK states of gauge fields at future colliders, which
is very interesting in collider physics.

If the extra space manifold is a sector of D? or a seg-
ment of A%, we point out that the masses of KK states can
be set arbitrarily heavy if the range of the angle is small
enough.

Furthermore, we discuss the complete global discrete
symmetry on the space-time M* x T?. We prove that the
possible global discrete symmetries on the torus is Zs, Z3,
Z4, and Zg. We also discuss the 6-dimensional N = 2 su-
persymmetric SU(5) models on the space-time M* x T?
with Zg symmetry. There is 4-dimensional N = 1 super-
symmetry and the standard model gauge symmetry in the
bulk for the zero modes, and on the 3-brane at the Zg fixed
point for all the modes. Including the KK states, we will
have the 4-dimensional N = 4 supersymmetry and SU(5)
gauge symmetry in the bulk, the 4-dimensional N = 1 su-
persymmetry and SU(5) gauge symmetry on the 3-branes
at the Z3 fixed points, and the 4-dimensional N = 4 super-
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symmetry and SU(3) x SU(2) x U(1) gauge symmetry on
the 3-branes at the Z5 fixed points. The standard model
fermions and Higgs fields can be on any 3-brane at one
of the fixed points. In particular, if we put the standard
model fermions and Higgs fields on the 3-brane at the Zg
fixed point, the extra dimensions can be large and the
gauge hierarchy problem can be solved because there is
no proton decay problem at all.

The phenomenology in those scenarios deserves further
study.
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